Properties

Label 3174.2
Level 3174
Weight 2
Dimension 69563
Nonzero newspaces 8
Sturm bound 1117248
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3174 = 2 \cdot 3 \cdot 23^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(1117248\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(3174))\).

Total New Old
Modular forms 282304 69563 212741
Cusp forms 276321 69563 206758
Eisenstein series 5983 0 5983

Trace form

\( 69563 q - q^{2} - q^{3} - q^{4} - 6 q^{5} - q^{6} - 8 q^{7} - q^{8} - q^{9} - 6 q^{10} - 12 q^{11} - q^{12} - 14 q^{13} - 8 q^{14} + 38 q^{15} - q^{16} + 70 q^{17} + 87 q^{18} + 68 q^{19} + 82 q^{20}+ \cdots + 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(3174))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3174.2.a \(\chi_{3174}(1, \cdot)\) 3174.2.a.a 1 1
3174.2.a.b 1
3174.2.a.c 1
3174.2.a.d 1
3174.2.a.e 1
3174.2.a.f 1
3174.2.a.g 1
3174.2.a.h 2
3174.2.a.i 2
3174.2.a.j 2
3174.2.a.k 2
3174.2.a.l 2
3174.2.a.m 2
3174.2.a.n 2
3174.2.a.o 2
3174.2.a.p 2
3174.2.a.q 2
3174.2.a.r 2
3174.2.a.s 2
3174.2.a.t 4
3174.2.a.u 4
3174.2.a.v 4
3174.2.a.w 5
3174.2.a.x 5
3174.2.a.y 5
3174.2.a.z 5
3174.2.a.ba 5
3174.2.a.bb 5
3174.2.a.bc 5
3174.2.a.bd 5
3174.2.d \(\chi_{3174}(3173, \cdot)\) n/a 168 1
3174.2.e \(\chi_{3174}(487, \cdot)\) n/a 840 10
3174.2.f \(\chi_{3174}(263, \cdot)\) n/a 1680 10
3174.2.i \(\chi_{3174}(139, \cdot)\) n/a 2024 22
3174.2.j \(\chi_{3174}(137, \cdot)\) n/a 4048 22
3174.2.m \(\chi_{3174}(13, \cdot)\) n/a 20240 220
3174.2.p \(\chi_{3174}(5, \cdot)\) n/a 40480 220

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(3174))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(3174)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(138))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(529))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1058))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1587))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3174))\)\(^{\oplus 1}\)