Defining parameters
Level: | \( N \) | = | \( 3174 = 2 \cdot 3 \cdot 23^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(1117248\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(3174))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 282304 | 69563 | 212741 |
Cusp forms | 276321 | 69563 | 206758 |
Eisenstein series | 5983 | 0 | 5983 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(3174))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
3174.2.a | \(\chi_{3174}(1, \cdot)\) | 3174.2.a.a | 1 | 1 |
3174.2.a.b | 1 | |||
3174.2.a.c | 1 | |||
3174.2.a.d | 1 | |||
3174.2.a.e | 1 | |||
3174.2.a.f | 1 | |||
3174.2.a.g | 1 | |||
3174.2.a.h | 2 | |||
3174.2.a.i | 2 | |||
3174.2.a.j | 2 | |||
3174.2.a.k | 2 | |||
3174.2.a.l | 2 | |||
3174.2.a.m | 2 | |||
3174.2.a.n | 2 | |||
3174.2.a.o | 2 | |||
3174.2.a.p | 2 | |||
3174.2.a.q | 2 | |||
3174.2.a.r | 2 | |||
3174.2.a.s | 2 | |||
3174.2.a.t | 4 | |||
3174.2.a.u | 4 | |||
3174.2.a.v | 4 | |||
3174.2.a.w | 5 | |||
3174.2.a.x | 5 | |||
3174.2.a.y | 5 | |||
3174.2.a.z | 5 | |||
3174.2.a.ba | 5 | |||
3174.2.a.bb | 5 | |||
3174.2.a.bc | 5 | |||
3174.2.a.bd | 5 | |||
3174.2.d | \(\chi_{3174}(3173, \cdot)\) | n/a | 168 | 1 |
3174.2.e | \(\chi_{3174}(487, \cdot)\) | n/a | 840 | 10 |
3174.2.f | \(\chi_{3174}(263, \cdot)\) | n/a | 1680 | 10 |
3174.2.i | \(\chi_{3174}(139, \cdot)\) | n/a | 2024 | 22 |
3174.2.j | \(\chi_{3174}(137, \cdot)\) | n/a | 4048 | 22 |
3174.2.m | \(\chi_{3174}(13, \cdot)\) | n/a | 20240 | 220 |
3174.2.p | \(\chi_{3174}(5, \cdot)\) | n/a | 40480 | 220 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(3174))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(3174)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(138))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(529))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1058))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1587))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3174))\)\(^{\oplus 1}\)