Properties

Label 320.2
Level 320
Weight 2
Dimension 1518
Nonzero newspaces 14
Newform subspaces 42
Sturm bound 12288
Trace bound 12

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 14 \)
Newform subspaces: \( 42 \)
Sturm bound: \(12288\)
Trace bound: \(12\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(320))\).

Total New Old
Modular forms 3360 1650 1710
Cusp forms 2785 1518 1267
Eisenstein series 575 132 443

Trace form

\( 1518 q - 16 q^{2} - 12 q^{3} - 16 q^{4} - 24 q^{5} - 48 q^{6} - 8 q^{7} - 16 q^{8} - 14 q^{9} - 24 q^{10} - 28 q^{11} - 16 q^{12} - 16 q^{14} - 12 q^{15} - 48 q^{16} - 12 q^{17} - 16 q^{18} + 4 q^{19} - 24 q^{20}+ \cdots - 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(320))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
320.2.a \(\chi_{320}(1, \cdot)\) 320.2.a.a 1 1
320.2.a.b 1
320.2.a.c 1
320.2.a.d 1
320.2.a.e 1
320.2.a.f 1
320.2.a.g 2
320.2.c \(\chi_{320}(129, \cdot)\) 320.2.c.a 2 1
320.2.c.b 2
320.2.c.c 2
320.2.c.d 4
320.2.d \(\chi_{320}(161, \cdot)\) 320.2.d.a 4 1
320.2.d.b 4
320.2.f \(\chi_{320}(289, \cdot)\) 320.2.f.a 4 1
320.2.f.b 8
320.2.j \(\chi_{320}(47, \cdot)\) 320.2.j.a 2 2
320.2.j.b 18
320.2.l \(\chi_{320}(81, \cdot)\) 320.2.l.a 16 2
320.2.n \(\chi_{320}(63, \cdot)\) 320.2.n.a 2 2
320.2.n.b 2
320.2.n.c 2
320.2.n.d 2
320.2.n.e 2
320.2.n.f 2
320.2.n.g 2
320.2.n.h 2
320.2.n.i 4
320.2.o \(\chi_{320}(223, \cdot)\) 320.2.o.a 2 2
320.2.o.b 2
320.2.o.c 2
320.2.o.d 2
320.2.o.e 8
320.2.o.f 8
320.2.q \(\chi_{320}(49, \cdot)\) 320.2.q.a 2 2
320.2.q.b 2
320.2.q.c 16
320.2.s \(\chi_{320}(207, \cdot)\) 320.2.s.a 2 2
320.2.s.b 18
320.2.u \(\chi_{320}(87, \cdot)\) None 0 4
320.2.x \(\chi_{320}(41, \cdot)\) None 0 4
320.2.z \(\chi_{320}(9, \cdot)\) None 0 4
320.2.ba \(\chi_{320}(7, \cdot)\) None 0 4
320.2.bd \(\chi_{320}(43, \cdot)\) 320.2.bd.a 368 8
320.2.be \(\chi_{320}(21, \cdot)\) 320.2.be.a 256 8
320.2.bf \(\chi_{320}(29, \cdot)\) 320.2.bf.a 368 8
320.2.bj \(\chi_{320}(3, \cdot)\) 320.2.bj.a 368 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(320))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(320)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(160))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(320))\)\(^{\oplus 1}\)