Defining parameters
Level: | \( N \) | \(=\) | \( 3200 = 2^{7} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3200.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 48 \) | ||
Sturm bound: | \(960\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(3\), \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3200))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 528 | 76 | 452 |
Cusp forms | 433 | 76 | 357 |
Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(15\) |
\(+\) | \(-\) | \(-\) | \(22\) |
\(-\) | \(+\) | \(-\) | \(21\) |
\(-\) | \(-\) | \(+\) | \(18\) |
Plus space | \(+\) | \(33\) | |
Minus space | \(-\) | \(43\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3200))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3200))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(3200)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(320))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(400))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(640))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(800))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1600))\)\(^{\oplus 2}\)