Properties

Label 3240.1
Level 3240
Weight 1
Dimension 108
Nonzero newspaces 7
Newform subspaces 35
Sturm bound 559872
Trace bound 19

Downloads

Learn more

Defining parameters

Level: N N = 3240=23345 3240 = 2^{3} \cdot 3^{4} \cdot 5
Weight: k k = 1 1
Nonzero newspaces: 7 7
Newform subspaces: 35 35
Sturm bound: 559872559872
Trace bound: 1919

Dimensions

The following table gives the dimensions of various subspaces of M1(Γ1(3240))M_{1}(\Gamma_1(3240)).

Total New Old
Modular forms 5938 780 5158
Cusp forms 754 108 646
Eisenstein series 5184 672 4512

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 88 0 20 0

Trace form

108q4q10+4q16+8q196q25+16q34+12q37+10q408q46+4q4924q55+12q58+4q61+24q64+6q7032q91+4q94+O(q100) 108 q - 4 q^{10} + 4 q^{16} + 8 q^{19} - 6 q^{25} + 16 q^{34} + 12 q^{37} + 10 q^{40} - 8 q^{46} + 4 q^{49} - 24 q^{55} + 12 q^{58} + 4 q^{61} + 24 q^{64} + 6 q^{70} - 32 q^{91} + 4 q^{94}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(Γ1(3240))S_{1}^{\mathrm{new}}(\Gamma_1(3240))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
3240.1.c χ3240(809,)\chi_{3240}(809, \cdot) None 0 1
3240.1.e χ3240(2431,)\chi_{3240}(2431, \cdot) None 0 1
3240.1.g χ3240(811,)\chi_{3240}(811, \cdot) None 0 1
3240.1.i χ3240(2429,)\chi_{3240}(2429, \cdot) None 0 1
3240.1.j χ3240(3079,)\chi_{3240}(3079, \cdot) None 0 1
3240.1.l χ3240(161,)\chi_{3240}(161, \cdot) None 0 1
3240.1.n χ3240(1781,)\chi_{3240}(1781, \cdot) None 0 1
3240.1.p χ3240(1459,)\chi_{3240}(1459, \cdot) 3240.1.p.a 1 1
3240.1.p.b 1
3240.1.p.c 1
3240.1.p.d 1
3240.1.p.e 2
3240.1.p.f 2
3240.1.r χ3240(323,)\chi_{3240}(323, \cdot) None 0 2
3240.1.u χ3240(973,)\chi_{3240}(973, \cdot) None 0 2
3240.1.v χ3240(1297,)\chi_{3240}(1297, \cdot) 3240.1.v.a 2 2
3240.1.v.b 2
3240.1.y χ3240(647,)\chi_{3240}(647, \cdot) None 0 2
3240.1.z χ3240(379,)\chi_{3240}(379, \cdot) 3240.1.z.a 2 2
3240.1.z.b 2
3240.1.z.c 2
3240.1.z.d 2
3240.1.z.e 2
3240.1.z.f 2
3240.1.z.g 2
3240.1.z.h 2
3240.1.z.i 2
3240.1.z.j 2
3240.1.z.k 4
3240.1.z.l 4
3240.1.ba χ3240(701,)\chi_{3240}(701, \cdot) None 0 2
3240.1.bc χ3240(1241,)\chi_{3240}(1241, \cdot) None 0 2
3240.1.be χ3240(919,)\chi_{3240}(919, \cdot) None 0 2
3240.1.bh χ3240(269,)\chi_{3240}(269, \cdot) 3240.1.bh.a 2 2
3240.1.bh.b 2
3240.1.bh.c 2
3240.1.bh.d 2
3240.1.bh.e 4
3240.1.bh.f 4
3240.1.bh.g 4
3240.1.bh.h 4
3240.1.bh.i 4
3240.1.bj χ3240(1891,)\chi_{3240}(1891, \cdot) None 0 2
3240.1.bl χ3240(271,)\chi_{3240}(271, \cdot) None 0 2
3240.1.bn χ3240(1889,)\chi_{3240}(1889, \cdot) 3240.1.bn.a 8 2
3240.1.bq χ3240(217,)\chi_{3240}(217, \cdot) 3240.1.bq.a 4 4
3240.1.bq.b 4
3240.1.br χ3240(863,)\chi_{3240}(863, \cdot) None 0 4
3240.1.bu χ3240(107,)\chi_{3240}(107, \cdot) None 0 4
3240.1.bv χ3240(757,)\chi_{3240}(757, \cdot) 3240.1.bv.a 8 4
3240.1.bv.b 8
3240.1.bv.c 8
3240.1.by χ3240(91,)\chi_{3240}(91, \cdot) None 0 6
3240.1.bz χ3240(89,)\chi_{3240}(89, \cdot) None 0 6
3240.1.ca χ3240(629,)\chi_{3240}(629, \cdot) None 0 6
3240.1.cb χ3240(631,)\chi_{3240}(631, \cdot) None 0 6
3240.1.ce χ3240(521,)\chi_{3240}(521, \cdot) None 0 6
3240.1.cf χ3240(19,)\chi_{3240}(19, \cdot) None 0 6
3240.1.ck χ3240(199,)\chi_{3240}(199, \cdot) None 0 6
3240.1.cl χ3240(341,)\chi_{3240}(341, \cdot) None 0 6
3240.1.cn χ3240(143,)\chi_{3240}(143, \cdot) None 0 12
3240.1.co χ3240(37,)\chi_{3240}(37, \cdot) None 0 12
3240.1.cr χ3240(467,)\chi_{3240}(467, \cdot) None 0 12
3240.1.cs χ3240(73,)\chi_{3240}(73, \cdot) None 0 12
3240.1.cv χ3240(209,)\chi_{3240}(209, \cdot) None 0 18
3240.1.cw χ3240(101,)\chi_{3240}(101, \cdot) None 0 18
3240.1.cz χ3240(31,)\chi_{3240}(31, \cdot) None 0 18
3240.1.db χ3240(139,)\chi_{3240}(139, \cdot) None 0 18
3240.1.dd χ3240(79,)\chi_{3240}(79, \cdot) None 0 18
3240.1.df χ3240(211,)\chi_{3240}(211, \cdot) None 0 18
3240.1.dg χ3240(41,)\chi_{3240}(41, \cdot) None 0 18
3240.1.di χ3240(29,)\chi_{3240}(29, \cdot) None 0 18
3240.1.dl χ3240(83,)\chi_{3240}(83, \cdot) None 0 36
3240.1.dm χ3240(13,)\chi_{3240}(13, \cdot) None 0 36
3240.1.dp χ3240(23,)\chi_{3240}(23, \cdot) None 0 36
3240.1.dq χ3240(97,)\chi_{3240}(97, \cdot) None 0 36

Decomposition of S1old(Γ1(3240))S_{1}^{\mathrm{old}}(\Gamma_1(3240)) into lower level spaces

S1old(Γ1(3240)) S_{1}^{\mathrm{old}}(\Gamma_1(3240)) \cong S1new(Γ1(1))S_{1}^{\mathrm{new}}(\Gamma_1(1))40^{\oplus 40}\oplusS1new(Γ1(2))S_{1}^{\mathrm{new}}(\Gamma_1(2))30^{\oplus 30}\oplusS1new(Γ1(3))S_{1}^{\mathrm{new}}(\Gamma_1(3))32^{\oplus 32}\oplusS1new(Γ1(4))S_{1}^{\mathrm{new}}(\Gamma_1(4))20^{\oplus 20}\oplusS1new(Γ1(5))S_{1}^{\mathrm{new}}(\Gamma_1(5))20^{\oplus 20}\oplusS1new(Γ1(6))S_{1}^{\mathrm{new}}(\Gamma_1(6))24^{\oplus 24}\oplusS1new(Γ1(8))S_{1}^{\mathrm{new}}(\Gamma_1(8))10^{\oplus 10}\oplusS1new(Γ1(9))S_{1}^{\mathrm{new}}(\Gamma_1(9))24^{\oplus 24}\oplusS1new(Γ1(10))S_{1}^{\mathrm{new}}(\Gamma_1(10))15^{\oplus 15}\oplusS1new(Γ1(12))S_{1}^{\mathrm{new}}(\Gamma_1(12))16^{\oplus 16}\oplusS1new(Γ1(15))S_{1}^{\mathrm{new}}(\Gamma_1(15))16^{\oplus 16}\oplusS1new(Γ1(18))S_{1}^{\mathrm{new}}(\Gamma_1(18))18^{\oplus 18}\oplusS1new(Γ1(20))S_{1}^{\mathrm{new}}(\Gamma_1(20))10^{\oplus 10}\oplusS1new(Γ1(24))S_{1}^{\mathrm{new}}(\Gamma_1(24))8^{\oplus 8}\oplusS1new(Γ1(27))S_{1}^{\mathrm{new}}(\Gamma_1(27))16^{\oplus 16}\oplusS1new(Γ1(30))S_{1}^{\mathrm{new}}(\Gamma_1(30))12^{\oplus 12}\oplusS1new(Γ1(36))S_{1}^{\mathrm{new}}(\Gamma_1(36))12^{\oplus 12}\oplusS1new(Γ1(40))S_{1}^{\mathrm{new}}(\Gamma_1(40))5^{\oplus 5}\oplusS1new(Γ1(45))S_{1}^{\mathrm{new}}(\Gamma_1(45))12^{\oplus 12}\oplusS1new(Γ1(54))S_{1}^{\mathrm{new}}(\Gamma_1(54))12^{\oplus 12}\oplusS1new(Γ1(60))S_{1}^{\mathrm{new}}(\Gamma_1(60))8^{\oplus 8}\oplusS1new(Γ1(72))S_{1}^{\mathrm{new}}(\Gamma_1(72))6^{\oplus 6}\oplusS1new(Γ1(81))S_{1}^{\mathrm{new}}(\Gamma_1(81))8^{\oplus 8}\oplusS1new(Γ1(90))S_{1}^{\mathrm{new}}(\Gamma_1(90))9^{\oplus 9}\oplusS1new(Γ1(108))S_{1}^{\mathrm{new}}(\Gamma_1(108))8^{\oplus 8}\oplusS1new(Γ1(120))S_{1}^{\mathrm{new}}(\Gamma_1(120))4^{\oplus 4}\oplusS1new(Γ1(135))S_{1}^{\mathrm{new}}(\Gamma_1(135))8^{\oplus 8}\oplusS1new(Γ1(162))S_{1}^{\mathrm{new}}(\Gamma_1(162))6^{\oplus 6}\oplusS1new(Γ1(180))S_{1}^{\mathrm{new}}(\Gamma_1(180))6^{\oplus 6}\oplusS1new(Γ1(216))S_{1}^{\mathrm{new}}(\Gamma_1(216))4^{\oplus 4}\oplusS1new(Γ1(270))S_{1}^{\mathrm{new}}(\Gamma_1(270))6^{\oplus 6}\oplusS1new(Γ1(324))S_{1}^{\mathrm{new}}(\Gamma_1(324))4^{\oplus 4}\oplusS1new(Γ1(360))S_{1}^{\mathrm{new}}(\Gamma_1(360))3^{\oplus 3}\oplusS1new(Γ1(405))S_{1}^{\mathrm{new}}(\Gamma_1(405))4^{\oplus 4}\oplusS1new(Γ1(540))S_{1}^{\mathrm{new}}(\Gamma_1(540))4^{\oplus 4}\oplusS1new(Γ1(648))S_{1}^{\mathrm{new}}(\Gamma_1(648))2^{\oplus 2}\oplusS1new(Γ1(810))S_{1}^{\mathrm{new}}(\Gamma_1(810))3^{\oplus 3}\oplusS1new(Γ1(1080))S_{1}^{\mathrm{new}}(\Gamma_1(1080))2^{\oplus 2}\oplusS1new(Γ1(1620))S_{1}^{\mathrm{new}}(\Gamma_1(1620))2^{\oplus 2}