Properties

Label 3248.1.bu
Level $3248$
Weight $1$
Character orbit 3248.bu
Rep. character $\chi_{3248}(2145,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $2$
Newform subspaces $1$
Sturm bound $480$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3248 = 2^{4} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3248.bu (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 203 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(480\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3248, [\chi])\).

Total New Old
Modular forms 32 6 26
Cusp forms 8 2 6
Eisenstein series 24 4 20

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q - 3 q^{5} - q^{7} + q^{9} + O(q^{10}) \) \( 2 q - 3 q^{5} - q^{7} + q^{9} - 2 q^{23} + 2 q^{25} - 2 q^{29} - 3 q^{45} - q^{49} + q^{53} - 2 q^{63} - 3 q^{65} - 2 q^{67} + 2 q^{71} - q^{81} - 3 q^{91} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(3248, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3248.1.bu.a 3248.bu 203.i $2$ $1.621$ \(\Q(\sqrt{-3}) \) $D_{6}$ None \(\Q(\sqrt{29}) \) 812.1.o.a \(0\) \(0\) \(-3\) \(-1\) \(q+(-1-\zeta_{6})q^{5}-\zeta_{6}q^{7}-\zeta_{6}^{2}q^{9}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3248, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3248, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(812, [\chi])\)\(^{\oplus 3}\)