Defining parameters
Level: | \( N \) | \(=\) | \( 3248 = 2^{4} \cdot 7 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3248.bu (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 203 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3248, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 6 | 26 |
Cusp forms | 8 | 2 | 6 |
Eisenstein series | 24 | 4 | 20 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 2 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3248, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3248.1.bu.a | $2$ | $1.621$ | \(\Q(\sqrt{-3}) \) | $D_{6}$ | None | \(\Q(\sqrt{29}) \) | \(0\) | \(0\) | \(-3\) | \(-1\) | \(q+(-1-\zeta_{6})q^{5}-\zeta_{6}q^{7}-\zeta_{6}^{2}q^{9}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3248, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3248, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(812, [\chi])\)\(^{\oplus 3}\)