Properties

Label 3249.2.x
Level $3249$
Weight $2$
Character orbit 3249.x
Rep. character $\chi_{3249}(488,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $1944$
Sturm bound $760$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.x (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 171 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(760\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3249, [\chi])\).

Total New Old
Modular forms 2400 2136 264
Cusp forms 2160 1944 216
Eisenstein series 240 192 48

Trace form

\( 1944 q + 9 q^{2} + 3 q^{4} + 9 q^{5} - 3 q^{7} + 24 q^{9} + 12 q^{10} + 9 q^{12} + 6 q^{13} + 9 q^{14} + 36 q^{15} + 9 q^{16} - 27 q^{17} - 36 q^{18} - 144 q^{20} - 3 q^{21} - 30 q^{22} + 45 q^{23} + 21 q^{24}+ \cdots - 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3249, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3249, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3249, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 2}\)