Properties

Label 325.10.l
Level 325325
Weight 1010
Character orbit 325.l
Rep. character χ325(66,)\chi_{325}(66,\cdot)
Character field Q(ζ5)\Q(\zeta_{5})
Dimension 10801080
Sturm bound 350350

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 325=5213 325 = 5^{2} \cdot 13
Weight: k k == 10 10
Character orbit: [χ][\chi] == 325.l (of order 55 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 25 25
Character field: Q(ζ5)\Q(\zeta_{5})
Sturm bound: 350350

Dimensions

The following table gives the dimensions of various subspaces of M10(325,[χ])M_{10}(325, [\chi]).

Total New Old
Modular forms 1264 1080 184
Cusp forms 1248 1080 168
Eisenstein series 16 0 16

Trace form

1080q+296q369120q4+6936q55184q6+11888q72142q81731214q939174q1094532q11338664q12591492q14+13220q1516708788q16+146784q17++9587501264q99+O(q100) 1080 q + 296 q^{3} - 69120 q^{4} + 6936 q^{5} - 5184 q^{6} + 11888 q^{7} - 2142 q^{8} - 1731214 q^{9} - 39174 q^{10} - 94532 q^{11} - 338664 q^{12} - 591492 q^{14} + 13220 q^{15} - 16708788 q^{16} + 146784 q^{17}+ \cdots + 9587501264 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S10new(325,[χ])S_{10}^{\mathrm{new}}(325, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S10old(325,[χ])S_{10}^{\mathrm{old}}(325, [\chi]) into lower level spaces

S10old(325,[χ]) S_{10}^{\mathrm{old}}(325, [\chi]) \simeq S10new(25,[χ])S_{10}^{\mathrm{new}}(25, [\chi])2^{\oplus 2}