Properties

Label 325.10.x
Level 325325
Weight 1010
Character orbit 325.x
Rep. character χ325(7,)\chi_{325}(7,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 748748
Sturm bound 350350

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 325=5213 325 = 5^{2} \cdot 13
Weight: k k == 10 10
Character orbit: [χ][\chi] == 325.x (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 65 65
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 350350

Dimensions

The following table gives the dimensions of various subspaces of M10(325,[χ])M_{10}(325, [\chi]).

Total New Old
Modular forms 1284 764 520
Cusp forms 1236 748 488
Eisenstein series 48 16 32

Trace form

748q+6q2+2q3+94720q48q6+2q710176q9175504q11229936q12107516q1323724036q16475324q172728900q18+690200q19892024q21++8199810172q99+O(q100) 748 q + 6 q^{2} + 2 q^{3} + 94720 q^{4} - 8 q^{6} + 2 q^{7} - 10176 q^{9} - 175504 q^{11} - 229936 q^{12} - 107516 q^{13} - 23724036 q^{16} - 475324 q^{17} - 2728900 q^{18} + 690200 q^{19} - 892024 q^{21}+ \cdots + 8199810172 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S10new(325,[χ])S_{10}^{\mathrm{new}}(325, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S10old(325,[χ])S_{10}^{\mathrm{old}}(325, [\chi]) into lower level spaces

S10old(325,[χ]) S_{10}^{\mathrm{old}}(325, [\chi]) \simeq S10new(65,[χ])S_{10}^{\mathrm{new}}(65, [\chi])2^{\oplus 2}