Properties

Label 325.2.e
Level $325$
Weight $2$
Character orbit 325.e
Rep. character $\chi_{325}(126,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $40$
Newform subspaces $5$
Sturm bound $70$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 5 \)
Sturm bound: \(70\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(325, [\chi])\).

Total New Old
Modular forms 80 52 28
Cusp forms 56 40 16
Eisenstein series 24 12 12

Trace form

\( 40 q + 2 q^{3} - 18 q^{4} - 10 q^{6} + 2 q^{7} + 12 q^{8} - 14 q^{9} - 6 q^{11} + 4 q^{12} + 4 q^{13} + 8 q^{14} - 18 q^{16} + 10 q^{17} - 8 q^{18} - 4 q^{19} - 24 q^{21} - 4 q^{22} + 6 q^{23} - 8 q^{24}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(325, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
325.2.e.a 325.e 13.c $4$ $2.595$ \(\Q(\sqrt{-3}, \sqrt{13})\) None 65.2.e.b \(-1\) \(2\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{3}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
325.2.e.b 325.e 13.c $4$ $2.595$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 65.2.e.a \(1\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(1-2\beta _{1}+\beta _{3})q^{3}+(\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
325.2.e.c 325.e 13.c $10$ $2.595$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 325.2.e.c \(0\) \(-3\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(-1-\beta _{4}+\beta _{6}+\beta _{8})q^{3}+\cdots\)
325.2.e.d 325.e 13.c $10$ $2.595$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 325.2.e.c \(0\) \(3\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(1+\beta _{4}-\beta _{6}-\beta _{8})q^{3}+(-\beta _{6}+\cdots)q^{4}+\cdots\)
325.2.e.e 325.e 13.c $12$ $2.595$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 65.2.n.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{6}q^{2}+(\beta _{6}-\beta _{11})q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(325, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(325, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)