Defining parameters
Level: | \( N \) | \(=\) | \( 325 = 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 325.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(70\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(325, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 52 | 28 |
Cusp forms | 56 | 40 | 16 |
Eisenstein series | 24 | 12 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(325, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
325.2.e.a | $4$ | $2.595$ | \(\Q(\sqrt{-3}, \sqrt{13})\) | None | \(-1\) | \(2\) | \(0\) | \(-2\) | \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{3}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) |
325.2.e.b | $4$ | $2.595$ | \(\Q(\sqrt{-3}, \sqrt{5})\) | None | \(1\) | \(0\) | \(0\) | \(4\) | \(q+\beta _{1}q^{2}+(1-2\beta _{1}+\beta _{3})q^{3}+(\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) |
325.2.e.c | $10$ | $2.595$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(-3\) | \(0\) | \(2\) | \(q+\beta _{1}q^{2}+(-1-\beta _{4}+\beta _{6}+\beta _{8})q^{3}+\cdots\) |
325.2.e.d | $10$ | $2.595$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(3\) | \(0\) | \(-2\) | \(q-\beta _{1}q^{2}+(1+\beta _{4}-\beta _{6}-\beta _{8})q^{3}+(-\beta _{6}+\cdots)q^{4}+\cdots\) |
325.2.e.e | $12$ | $2.595$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{6}q^{2}+(\beta _{6}-\beta _{11})q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(325, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(325, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)