Properties

Label 325.2.e
Level 325325
Weight 22
Character orbit 325.e
Rep. character χ325(126,)\chi_{325}(126,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 4040
Newform subspaces 55
Sturm bound 7070
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 325=5213 325 = 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 325.e (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 5 5
Sturm bound: 7070
Trace bound: 33
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(325,[χ])M_{2}(325, [\chi]).

Total New Old
Modular forms 80 52 28
Cusp forms 56 40 16
Eisenstein series 24 12 12

Trace form

40q+2q318q410q6+2q7+12q814q96q11+4q12+4q13+8q1418q16+10q178q184q1924q214q22+6q238q24++40q99+O(q100) 40 q + 2 q^{3} - 18 q^{4} - 10 q^{6} + 2 q^{7} + 12 q^{8} - 14 q^{9} - 6 q^{11} + 4 q^{12} + 4 q^{13} + 8 q^{14} - 18 q^{16} + 10 q^{17} - 8 q^{18} - 4 q^{19} - 24 q^{21} - 4 q^{22} + 6 q^{23} - 8 q^{24}+ \cdots + 40 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(325,[χ])S_{2}^{\mathrm{new}}(325, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
325.2.e.a 325.e 13.c 44 2.5952.595 Q(3,13)\Q(\sqrt{-3}, \sqrt{13}) None 65.2.e.b 1-1 22 00 2-2 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ1q2+(1+β2)q3+(1+β1+β2+)q4+q-\beta _{1}q^{2}+(1+\beta _{2})q^{3}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots
325.2.e.b 325.e 13.c 44 2.5952.595 Q(3,5)\Q(\sqrt{-3}, \sqrt{5}) None 65.2.e.a 11 00 00 44 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+β1q2+(12β1+β3)q3+(β1+β2+)q4+q+\beta _{1}q^{2}+(1-2\beta _{1}+\beta _{3})q^{3}+(\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots
325.2.e.c 325.e 13.c 1010 2.5952.595 Q[x]/(x10+)\mathbb{Q}[x]/(x^{10} + \cdots) None 325.2.e.c 00 3-3 00 22 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+β1q2+(1β4+β6+β8)q3+q+\beta _{1}q^{2}+(-1-\beta _{4}+\beta _{6}+\beta _{8})q^{3}+\cdots
325.2.e.d 325.e 13.c 1010 2.5952.595 Q[x]/(x10+)\mathbb{Q}[x]/(x^{10} + \cdots) None 325.2.e.c 00 33 00 2-2 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ1q2+(1+β4β6β8)q3+(β6+)q4+q-\beta _{1}q^{2}+(1+\beta _{4}-\beta _{6}-\beta _{8})q^{3}+(-\beta _{6}+\cdots)q^{4}+\cdots
325.2.e.e 325.e 13.c 1212 2.5952.595 Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots) None 65.2.n.a 00 00 00 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+β6q2+(β6β11)q3+(1+β2+)q4+q+\beta _{6}q^{2}+(\beta _{6}-\beta _{11})q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots

Decomposition of S2old(325,[χ])S_{2}^{\mathrm{old}}(325, [\chi]) into lower level spaces

S2old(325,[χ]) S_{2}^{\mathrm{old}}(325, [\chi]) \simeq S2new(65,[χ])S_{2}^{\mathrm{new}}(65, [\chi])2^{\oplus 2}