Properties

Label 3267.1.h
Level $3267$
Weight $1$
Character orbit 3267.h
Rep. character $\chi_{3267}(604,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $1$
Sturm bound $396$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3267 = 3^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3267.h (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 99 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(396\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3267, [\chi])\).

Total New Old
Modular forms 96 20 76
Cusp forms 24 4 20
Eisenstein series 72 16 56

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 4 0

Trace form

\( 4 q + 2 q^{4} - 2 q^{5} + O(q^{10}) \) \( 4 q + 2 q^{4} - 2 q^{5} + 4 q^{14} + 2 q^{16} + 2 q^{20} - 2 q^{31} - 4 q^{37} - 2 q^{47} + 2 q^{49} - 4 q^{53} + 4 q^{58} + 2 q^{59} + 4 q^{64} + 2 q^{67} + 4 q^{70} + 4 q^{71} - 4 q^{80} - 2 q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(3267, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3267.1.h.a 3267.h 99.h $4$ $1.630$ \(\Q(\sqrt{-2}, \sqrt{-3})\) $S_{4}$ None None 1089.1.h.a \(0\) \(0\) \(-2\) \(0\) \(q+\beta _{1}q^{2}+\beta _{2}q^{4}-\beta _{2}q^{5}+\beta _{1}q^{7}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3267, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3267, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(297, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1089, [\chi])\)\(^{\oplus 2}\)