Defining parameters
Level: | \( N \) | \(=\) | \( 3267 = 3^{3} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3267.i (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(396\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3267, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 78 | 20 | 58 |
Cusp forms | 6 | 2 | 4 |
Eisenstein series | 72 | 18 | 54 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 2 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3267, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3267.1.i.a | $2$ | $1.630$ | \(\Q(\sqrt{-3}) \) | $D_{6}$ | \(\Q(\sqrt{-11}) \) | None | \(0\) | \(0\) | \(-3\) | \(0\) | \(q+\zeta_{6}^{2}q^{4}+(-1-\zeta_{6})q^{5}-\zeta_{6}q^{16}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3267, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3267, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(1089, [\chi])\)\(^{\oplus 2}\)