Properties

Label 3267.1.i
Level $3267$
Weight $1$
Character orbit 3267.i
Rep. character $\chi_{3267}(1574,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $2$
Newform subspaces $1$
Sturm bound $396$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3267 = 3^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3267.i (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(396\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3267, [\chi])\).

Total New Old
Modular forms 78 20 58
Cusp forms 6 2 4
Eisenstein series 72 18 54

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q - q^{4} - 3 q^{5} + O(q^{10}) \) \( 2 q - q^{4} - 3 q^{5} - q^{16} + 3 q^{20} + 2 q^{25} - q^{31} + 2 q^{37} + 3 q^{47} + q^{49} + 3 q^{59} + 2 q^{64} - q^{67} + q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(3267, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3267.1.i.a 3267.i 9.d $2$ $1.630$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-11}) \) None 1089.1.i.a \(0\) \(0\) \(-3\) \(0\) \(q+\zeta_{6}^{2}q^{4}+(-1-\zeta_{6})q^{5}-\zeta_{6}q^{16}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3267, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3267, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(1089, [\chi])\)\(^{\oplus 2}\)