Properties

Label 3267.1.m
Level $3267$
Weight $1$
Character orbit 3267.m
Rep. character $\chi_{3267}(269,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $32$
Newform subspaces $5$
Sturm bound $396$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3267 = 3^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3267.m (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 5 \)
Sturm bound: \(396\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3267, [\chi])\).

Total New Old
Modular forms 188 32 156
Cusp forms 44 32 12
Eisenstein series 144 0 144

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 16 0

Trace form

\( 32 q - 4 q^{31} - 32 q^{34} - 4 q^{49} - 8 q^{64} - 16 q^{67} + 8 q^{70} + 8 q^{82} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3267, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3267.1.m.a 3267.m 33.h $4$ $1.630$ \(\Q(\zeta_{10})\) $D_{3}$ \(\Q(\sqrt{-3}) \) None 3267.1.b.a \(0\) \(0\) \(0\) \(-1\) \(q+\zeta_{10}^{2}q^{4}+\zeta_{10}^{2}q^{7}-\zeta_{10}q^{13}+\cdots\)
3267.1.m.b 3267.m 33.h $4$ $1.630$ \(\Q(\zeta_{10})\) $D_{3}$ \(\Q(\sqrt{-3}) \) None 3267.1.b.a \(0\) \(0\) \(0\) \(1\) \(q+\zeta_{10}^{2}q^{4}-\zeta_{10}^{2}q^{7}+\zeta_{10}q^{13}+\cdots\)
3267.1.m.c 3267.m 33.h $8$ $1.630$ 8.0.324000000.3 $D_{6}$ \(\Q(\sqrt{-3}) \) None 3267.1.b.e \(0\) \(0\) \(0\) \(0\) \(q+(-1-\beta _{2}-\beta _{4}-\beta _{6})q^{4}+\beta _{3}q^{7}+\cdots\)
3267.1.m.d 3267.m 33.h $8$ $1.630$ 8.0.64000000.1 $S_{4}$ None None 3267.1.b.c \(0\) \(0\) \(0\) \(-2\) \(q-\beta _{7}q^{2}-\beta _{4}q^{4}-\beta _{3}q^{5}+\beta _{4}q^{7}+\cdots\)
3267.1.m.e 3267.m 33.h $8$ $1.630$ 8.0.64000000.1 $S_{4}$ None None 3267.1.b.c \(0\) \(0\) \(0\) \(2\) \(q+\beta _{7}q^{2}-\beta _{4}q^{4}-\beta _{3}q^{5}-\beta _{4}q^{7}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3267, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3267, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 3}\)