Defining parameters
Level: | \( N \) | \(=\) | \( 3267 = 3^{3} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3267.m (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 33 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(396\) | ||
Trace bound: | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3267, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 188 | 32 | 156 |
Cusp forms | 44 | 32 | 12 |
Eisenstein series | 144 | 0 | 144 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 16 | 0 | 16 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3267, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3267.1.m.a | $4$ | $1.630$ | \(\Q(\zeta_{10})\) | $D_{3}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(-1\) | \(q+\zeta_{10}^{2}q^{4}+\zeta_{10}^{2}q^{7}-\zeta_{10}q^{13}+\cdots\) |
3267.1.m.b | $4$ | $1.630$ | \(\Q(\zeta_{10})\) | $D_{3}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(1\) | \(q+\zeta_{10}^{2}q^{4}-\zeta_{10}^{2}q^{7}+\zeta_{10}q^{13}+\cdots\) |
3267.1.m.c | $8$ | $1.630$ | 8.0.324000000.3 | $D_{6}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-1-\beta _{2}-\beta _{4}-\beta _{6})q^{4}+\beta _{3}q^{7}+\cdots\) |
3267.1.m.d | $8$ | $1.630$ | 8.0.64000000.1 | $S_{4}$ | None | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q-\beta _{7}q^{2}-\beta _{4}q^{4}-\beta _{3}q^{5}+\beta _{4}q^{7}+\cdots\) |
3267.1.m.e | $8$ | $1.630$ | 8.0.64000000.1 | $S_{4}$ | None | None | \(0\) | \(0\) | \(0\) | \(2\) | \(q+\beta _{7}q^{2}-\beta _{4}q^{4}-\beta _{3}q^{5}-\beta _{4}q^{7}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3267, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3267, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 3}\)