Properties

Label 3267.2.s
Level $3267$
Weight $2$
Character orbit 3267.s
Rep. character $\chi_{3267}(296,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $1760$
Sturm bound $792$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3267 = 3^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3267.s (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 363 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(792\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3267, [\chi])\).

Total New Old
Modular forms 4020 1760 2260
Cusp forms 3900 1760 2140
Eisenstein series 120 0 120

Trace form

\( 1760 q - 176 q^{4} - 22 q^{10} - 22 q^{13} - 152 q^{16} + 20 q^{22} + 184 q^{25} - 30 q^{31} - 4 q^{34} + 12 q^{37} + 256 q^{49} + 22 q^{52} + 80 q^{55} - 132 q^{58} - 444 q^{64} - 88 q^{67} + 24 q^{70}+ \cdots - 52 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3267, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3267, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3267, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1089, [\chi])\)\(^{\oplus 2}\)