Properties

Label 3276.2.cv
Level 32763276
Weight 22
Character orbit 3276.cv
Rep. character χ3276(965,)\chi_{3276}(965,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 224224
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.cv (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 819 819
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3276,[χ])M_{2}(3276, [\chi]).

Total New Old
Modular forms 1368 224 1144
Cusp forms 1320 224 1096
Eisenstein series 48 0 48

Trace form

224q2q72q9+6q15+16q2112q23112q25+3q35+2q376q394q43+2q4920q514q57+2q63+36q6514q67+60q7112q77+56q93+O(q100) 224 q - 2 q^{7} - 2 q^{9} + 6 q^{15} + 16 q^{21} - 12 q^{23} - 112 q^{25} + 3 q^{35} + 2 q^{37} - 6 q^{39} - 4 q^{43} + 2 q^{49} - 20 q^{51} - 4 q^{57} + 2 q^{63} + 36 q^{65} - 14 q^{67} + 60 q^{71} - 12 q^{77}+ \cdots - 56 q^{93}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3276,[χ])S_{2}^{\mathrm{old}}(3276, [\chi]) into lower level spaces

S2old(3276,[χ]) S_{2}^{\mathrm{old}}(3276, [\chi]) \simeq S2new(819,[χ])S_{2}^{\mathrm{new}}(819, [\chi])3^{\oplus 3}\oplusS2new(1638,[χ])S_{2}^{\mathrm{new}}(1638, [\chi])2^{\oplus 2}