Properties

Label 3276.2.dz
Level 32763276
Weight 22
Character orbit 3276.dz
Rep. character χ3276(1517,)\chi_{3276}(1517,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 224224
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.dz (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 819 819
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3276,[χ])M_{2}(3276, [\chi]).

Total New Old
Modular forms 1368 224 1144
Cusp forms 1320 224 1096
Eisenstein series 48 0 48

Trace form

224q2q7+4q9+12q113q13+6q158q21112q25+18q2718q33+18q35q37+9q39+2q43+36q47+2q498q51+12q534q57+3q97+O(q100) 224 q - 2 q^{7} + 4 q^{9} + 12 q^{11} - 3 q^{13} + 6 q^{15} - 8 q^{21} - 112 q^{25} + 18 q^{27} - 18 q^{33} + 18 q^{35} - q^{37} + 9 q^{39} + 2 q^{43} + 36 q^{47} + 2 q^{49} - 8 q^{51} + 12 q^{53} - 4 q^{57}+ \cdots - 3 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3276,[χ])S_{2}^{\mathrm{old}}(3276, [\chi]) into lower level spaces

S2old(3276,[χ]) S_{2}^{\mathrm{old}}(3276, [\chi]) \simeq S2new(819,[χ])S_{2}^{\mathrm{new}}(819, [\chi])3^{\oplus 3}\oplusS2new(1638,[χ])S_{2}^{\mathrm{new}}(1638, [\chi])2^{\oplus 2}