Properties

Label 3276.2.fp
Level 32763276
Weight 22
Character orbit 3276.fp
Rep. character χ3276(911,)\chi_{3276}(911,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 864864
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.fp (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 36 36
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3276,[χ])M_{2}(3276, [\chi]).

Total New Old
Modular forms 1360 864 496
Cusp forms 1328 864 464
Eisenstein series 32 0 32

Trace form

864q8q9+56q18+84q2028q24+432q25+8q3060q32+88q33+24q3420q36+24q40+120q4140q42+48q45+48q46+28q48+432q49++24q97+O(q100) 864 q - 8 q^{9} + 56 q^{18} + 84 q^{20} - 28 q^{24} + 432 q^{25} + 8 q^{30} - 60 q^{32} + 88 q^{33} + 24 q^{34} - 20 q^{36} + 24 q^{40} + 120 q^{41} - 40 q^{42} + 48 q^{45} + 48 q^{46} + 28 q^{48} + 432 q^{49}+ \cdots + 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3276,[χ])S_{2}^{\mathrm{old}}(3276, [\chi]) into lower level spaces

S2old(3276,[χ]) S_{2}^{\mathrm{old}}(3276, [\chi]) \simeq S2new(36,[χ])S_{2}^{\mathrm{new}}(36, [\chi])4^{\oplus 4}\oplusS2new(252,[χ])S_{2}^{\mathrm{new}}(252, [\chi])2^{\oplus 2}\oplusS2new(468,[χ])S_{2}^{\mathrm{new}}(468, [\chi])2^{\oplus 2}