Properties

Label 3276.2.h
Level 32763276
Weight 22
Character orbit 3276.h
Rep. character χ3276(1637,)\chi_{3276}(1637,\cdot)
Character field Q\Q
Dimension 4040
Newform subspaces 33
Sturm bound 13441344
Trace bound 2525

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.h (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 273 273
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 13441344
Trace bound: 2525
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M2(3276,[χ])M_{2}(3276, [\chi]).

Total New Old
Modular forms 696 40 656
Cusp forms 648 40 608
Eisenstein series 48 0 48

Trace form

40q56q25+16q49+O(q100) 40 q - 56 q^{25} + 16 q^{49}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
3276.2.h.a 3276.h 273.g 88 26.15926.159 8.0.1871773696.1 None 3276.2.h.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q5β3q7β4q13β7q17+q-\beta _{1}q^{5}-\beta _{3}q^{7}-\beta _{4}q^{13}-\beta _{7}q^{17}+\cdots
3276.2.h.b 3276.h 273.g 1616 26.15926.159 16.0.\cdots.13 Q(91)\Q(\sqrt{-91}) 3276.2.h.b 00 00 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q+β7q5+β2q7β6q13β5q19+q+\beta _{7}q^{5}+\beta _{2}q^{7}-\beta _{6}q^{13}-\beta _{5}q^{19}+\cdots
3276.2.h.c 3276.h 273.g 1616 26.15926.159 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 3276.2.h.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β11q5+β10q7+(β4+β7)q11+q+\beta _{11}q^{5}+\beta _{10}q^{7}+(\beta _{4}+\beta _{7})q^{11}+\cdots

Decomposition of S2old(3276,[χ])S_{2}^{\mathrm{old}}(3276, [\chi]) into lower level spaces

S2old(3276,[χ]) S_{2}^{\mathrm{old}}(3276, [\chi]) \simeq S2new(273,[χ])S_{2}^{\mathrm{new}}(273, [\chi])6^{\oplus 6}\oplusS2new(546,[χ])S_{2}^{\mathrm{new}}(546, [\chi])4^{\oplus 4}\oplusS2new(819,[χ])S_{2}^{\mathrm{new}}(819, [\chi])3^{\oplus 3}\oplusS2new(1092,[χ])S_{2}^{\mathrm{new}}(1092, [\chi])2^{\oplus 2}\oplusS2new(1638,[χ])S_{2}^{\mathrm{new}}(1638, [\chi])2^{\oplus 2}