Properties

Label 3276.2.hm
Level 32763276
Weight 22
Character orbit 3276.hm
Rep. character χ3276(797,)\chi_{3276}(797,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 224224
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.hm (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 819 819
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3276,[χ])M_{2}(3276, [\chi]).

Total New Old
Modular forms 1368 224 1144
Cusp forms 1320 224 1096
Eisenstein series 48 0 48

Trace form

224q+2q96q15+12q23+112q25+3q356q3718q394q43+2q49+12q5112q5730q63+48q6542q6736q71+36q774q79++12q99+O(q100) 224 q + 2 q^{9} - 6 q^{15} + 12 q^{23} + 112 q^{25} + 3 q^{35} - 6 q^{37} - 18 q^{39} - 4 q^{43} + 2 q^{49} + 12 q^{51} - 12 q^{57} - 30 q^{63} + 48 q^{65} - 42 q^{67} - 36 q^{71} + 36 q^{77} - 4 q^{79}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3276,[χ])S_{2}^{\mathrm{old}}(3276, [\chi]) into lower level spaces

S2old(3276,[χ]) S_{2}^{\mathrm{old}}(3276, [\chi]) \simeq S2new(819,[χ])S_{2}^{\mathrm{new}}(819, [\chi])3^{\oplus 3}\oplusS2new(1638,[χ])S_{2}^{\mathrm{new}}(1638, [\chi])2^{\oplus 2}