Properties

Label 3276.2.ig
Level 32763276
Weight 22
Character orbit 3276.ig
Rep. character χ3276(1063,)\chi_{3276}(1063,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 552552
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.ig (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 364 364
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3276,[χ])M_{2}(3276, [\chi]).

Total New Old
Modular forms 1376 568 808
Cusp forms 1312 552 760
Eisenstein series 64 16 48

Trace form

552q+6q22q48q1410q166q22+504q25+4q29+6q3212q3736q46+14q496q50+14q56+30q58+16q64+64q654q74+4q77++48q98+O(q100) 552 q + 6 q^{2} - 2 q^{4} - 8 q^{14} - 10 q^{16} - 6 q^{22} + 504 q^{25} + 4 q^{29} + 6 q^{32} - 12 q^{37} - 36 q^{46} + 14 q^{49} - 6 q^{50} + 14 q^{56} + 30 q^{58} + 16 q^{64} + 64 q^{65} - 4 q^{74} + 4 q^{77}+ \cdots + 48 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3276,[χ])S_{2}^{\mathrm{old}}(3276, [\chi]) into lower level spaces

S2old(3276,[χ]) S_{2}^{\mathrm{old}}(3276, [\chi]) \simeq S2new(364,[χ])S_{2}^{\mathrm{new}}(364, [\chi])3^{\oplus 3}\oplusS2new(1092,[χ])S_{2}^{\mathrm{new}}(1092, [\chi])2^{\oplus 2}