Properties

Label 3276.2.jl
Level 32763276
Weight 22
Character orbit 3276.jl
Rep. character χ3276(227,)\chi_{3276}(227,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 26562656
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.jl (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 3276 3276
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3276,[χ])M_{2}(3276, [\chi]).

Total New Old
Modular forms 2720 2720 0
Cusp forms 2656 2656 0
Eisenstein series 64 64 0

Trace form

2656q6q412q5+12q6+4q912q1012q142q1610q1832q21+4q226q24+8q2824q296q3012q33+12q3412q368q37+6q96+O(q100) 2656 q - 6 q^{4} - 12 q^{5} + 12 q^{6} + 4 q^{9} - 12 q^{10} - 12 q^{14} - 2 q^{16} - 10 q^{18} - 32 q^{21} + 4 q^{22} - 6 q^{24} + 8 q^{28} - 24 q^{29} - 6 q^{30} - 12 q^{33} + 12 q^{34} - 12 q^{36} - 8 q^{37}+ \cdots - 6 q^{96}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.