Properties

Label 3276.2.lk
Level 32763276
Weight 22
Character orbit 3276.lk
Rep. character χ3276(151,)\chi_{3276}(151,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 26562656
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.lk (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 3276 3276
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3276,[χ])M_{2}(3276, [\chi]).

Total New Old
Modular forms 2720 2720 0
Cusp forms 2656 2656 0
Eisenstein series 64 64 0

Trace form

2656q4q2+4q54q616q88q98q134q148q1618q18+12q2020q218q22+4q244q2616q2816q294q3228q33++72q98+O(q100) 2656 q - 4 q^{2} + 4 q^{5} - 4 q^{6} - 16 q^{8} - 8 q^{9} - 8 q^{13} - 4 q^{14} - 8 q^{16} - 18 q^{18} + 12 q^{20} - 20 q^{21} - 8 q^{22} + 4 q^{24} - 4 q^{26} - 16 q^{28} - 16 q^{29} - 4 q^{32} - 28 q^{33}+ \cdots + 72 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.