Properties

Label 329.1.f
Level $329$
Weight $1$
Character orbit 329.f
Rep. character $\chi_{329}(46,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $10$
Newform subspaces $2$
Sturm bound $32$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 329 = 7 \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 329.f (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 329 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(32\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(329, [\chi])\).

Total New Old
Modular forms 14 14 0
Cusp forms 10 10 0
Eisenstein series 4 4 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 10 0 0 0

Trace form

\( 10 q - 5 q^{4} - 5 q^{9} + 5 q^{12} - 5 q^{14} - 5 q^{16} + 5 q^{18} - 10 q^{24} - 5 q^{25} + 5 q^{32} + 10 q^{36} - 5 q^{42} - 5 q^{47} - 10 q^{48} + 5 q^{51} + 5 q^{54} + 10 q^{56} + 10 q^{63} + 10 q^{64}+ \cdots - 10 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(329, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
329.1.f.a 329.f 329.f $2$ $0.164$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-47}) \) None 329.1.f.a \(1\) \(-2\) \(0\) \(-1\) \(q+\zeta_{6}q^{2}+\zeta_{6}^{2}q^{3}-2q^{6}+\zeta_{6}^{2}q^{7}+\cdots\)
329.1.f.b 329.f 329.f $8$ $0.164$ \(\Q(\zeta_{15})\) $D_{15}$ \(\Q(\sqrt{-47}) \) None 329.1.f.b \(-1\) \(2\) \(0\) \(1\) \(q+(\zeta_{30}^{8}+\zeta_{30}^{12})q^{2}+(-\zeta_{30}^{11}+\zeta_{30}^{14}+\cdots)q^{3}+\cdots\)