Defining parameters
Level: | \( N \) | \(=\) | \( 3328 = 2^{8} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3328.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 104 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(448\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3328, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 66 | 6 | 60 |
Cusp forms | 42 | 2 | 40 |
Eisenstein series | 24 | 4 | 20 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 2 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3328, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3328.1.h.a | $2$ | $1.661$ | \(\Q(\sqrt{-1}) \) | $D_{2}$ | \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-13}) \) | \(\Q(\sqrt{13}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-q^{9}-i q^{13}-2 q^{17}-q^{25}-2 i q^{29}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3328, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3328, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1664, [\chi])\)\(^{\oplus 2}\)