Properties

Label 3328.1.h
Level $3328$
Weight $1$
Character orbit 3328.h
Rep. character $\chi_{3328}(1663,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $448$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3328.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(448\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3328, [\chi])\).

Total New Old
Modular forms 66 6 60
Cusp forms 42 2 40
Eisenstein series 24 4 20

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q - 2 q^{9} - 4 q^{17} - 2 q^{25} - 2 q^{49} + 2 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3328, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3328.1.h.a 3328.h 104.h $2$ $1.661$ \(\Q(\sqrt{-1}) \) $D_{2}$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-13}) \) \(\Q(\sqrt{13}) \) 208.1.c.a \(0\) \(0\) \(0\) \(0\) \(q-q^{9}-i q^{13}-2 q^{17}-q^{25}-2 i q^{29}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3328, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3328, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1664, [\chi])\)\(^{\oplus 2}\)