Properties

Label 333.2.z
Level $333$
Weight $2$
Character orbit 333.z
Rep. character $\chi_{333}(14,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $144$
Newform subspaces $1$
Sturm bound $76$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 333 = 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 333.z (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 333 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(76\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(333, [\chi])\).

Total New Old
Modular forms 160 160 0
Cusp forms 144 144 0
Eisenstein series 16 16 0

Trace form

\( 144 q - 6 q^{2} - 6 q^{3} - 6 q^{5} + 2 q^{7} + 12 q^{8} - 6 q^{9} - 16 q^{10} + 38 q^{12} - 6 q^{14} - 28 q^{15} - 124 q^{16} - 10 q^{19} + 24 q^{20} + 12 q^{21} + 6 q^{22} - 24 q^{23} - 24 q^{24} - 18 q^{27}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(333, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
333.2.z.a 333.z 333.z $144$ $2.659$ None 333.2.z.a \(-6\) \(-6\) \(-6\) \(2\) $\mathrm{SU}(2)[C_{12}]$