Properties

Label 3330.2.bw
Level 33303330
Weight 22
Character orbit 3330.bw
Rep. character χ3330(1009,)\chi_{3330}(1009,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 188188
Sturm bound 13681368

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3330=232537 3330 = 2 \cdot 3^{2} \cdot 5 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3330.bw (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 185 185
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 13681368

Dimensions

The following table gives the dimensions of various subspaces of M2(3330,[χ])M_{2}(3330, [\chi]).

Total New Old
Modular forms 1400 188 1212
Cusp forms 1336 188 1148
Eisenstein series 64 0 64

Trace form

188q+94q44q5+4q118q1494q1618q19+4q2016q25+36q26+16q2932q318q344q3544q41+2q44+26q46+102q49++4q95+O(q100) 188 q + 94 q^{4} - 4 q^{5} + 4 q^{11} - 8 q^{14} - 94 q^{16} - 18 q^{19} + 4 q^{20} - 16 q^{25} + 36 q^{26} + 16 q^{29} - 32 q^{31} - 8 q^{34} - 4 q^{35} - 44 q^{41} + 2 q^{44} + 26 q^{46} + 102 q^{49}+ \cdots + 4 q^{95}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3330,[χ])S_{2}^{\mathrm{new}}(3330, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3330,[χ])S_{2}^{\mathrm{old}}(3330, [\chi]) into lower level spaces

S2old(3330,[χ]) S_{2}^{\mathrm{old}}(3330, [\chi]) \simeq S2new(185,[χ])S_{2}^{\mathrm{new}}(185, [\chi])6^{\oplus 6}\oplusS2new(370,[χ])S_{2}^{\mathrm{new}}(370, [\chi])3^{\oplus 3}\oplusS2new(555,[χ])S_{2}^{\mathrm{new}}(555, [\chi])4^{\oplus 4}\oplusS2new(1110,[χ])S_{2}^{\mathrm{new}}(1110, [\chi])2^{\oplus 2}\oplusS2new(1665,[χ])S_{2}^{\mathrm{new}}(1665, [\chi])2^{\oplus 2}