Properties

Label 336.3.m
Level 336336
Weight 33
Character orbit 336.m
Rep. character χ336(127,)\chi_{336}(127,\cdot)
Character field Q\Q
Dimension 1212
Newform subspaces 33
Sturm bound 192192
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 3 3
Character orbit: [χ][\chi] == 336.m (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 4 4
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 192192
Trace bound: 55
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M3(336,[χ])M_{3}(336, [\chi]).

Total New Old
Modular forms 140 12 128
Cusp forms 116 12 104
Eisenstein series 24 0 24

Trace form

12q24q536q9+72q13+24q1712q25120q2924q37+120q41+72q4584q49+168q53120q61144q6572q73+108q8196q85+216q89+72q97+O(q100) 12 q - 24 q^{5} - 36 q^{9} + 72 q^{13} + 24 q^{17} - 12 q^{25} - 120 q^{29} - 24 q^{37} + 120 q^{41} + 72 q^{45} - 84 q^{49} + 168 q^{53} - 120 q^{61} - 144 q^{65} - 72 q^{73} + 108 q^{81} - 96 q^{85} + 216 q^{89}+ \cdots - 72 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(336,[χ])S_{3}^{\mathrm{new}}(336, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
336.3.m.a 336.m 4.b 44 9.1559.155 Q(3,7)\Q(\sqrt{-3}, \sqrt{-7}) None 336.3.m.a 00 00 20-20 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ2q3+(5+β1)q5+β3q73q9+q-\beta _{2}q^{3}+(-5+\beta _{1})q^{5}+\beta _{3}q^{7}-3q^{9}+\cdots
336.3.m.b 336.m 4.b 44 9.1559.155 Q(3,7)\Q(\sqrt{-3}, \sqrt{-7}) None 336.3.m.b 00 00 8-8 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ2q32q5β3q73q9+(4β2+)q11+q-\beta _{2}q^{3}-2q^{5}-\beta _{3}q^{7}-3q^{9}+(4\beta _{2}+\cdots)q^{11}+\cdots
336.3.m.c 336.m 4.b 44 9.1559.155 Q(3,7)\Q(\sqrt{-3}, \sqrt{-7}) None 336.3.m.c 00 00 44 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β2q3+(1β1)q5β3q73q9+q+\beta _{2}q^{3}+(1-\beta _{1})q^{5}-\beta _{3}q^{7}-3q^{9}+\cdots

Decomposition of S3old(336,[χ])S_{3}^{\mathrm{old}}(336, [\chi]) into lower level spaces

S3old(336,[χ]) S_{3}^{\mathrm{old}}(336, [\chi]) \simeq S3new(12,[χ])S_{3}^{\mathrm{new}}(12, [\chi])6^{\oplus 6}\oplusS3new(16,[χ])S_{3}^{\mathrm{new}}(16, [\chi])4^{\oplus 4}\oplusS3new(28,[χ])S_{3}^{\mathrm{new}}(28, [\chi])6^{\oplus 6}\oplusS3new(48,[χ])S_{3}^{\mathrm{new}}(48, [\chi])2^{\oplus 2}\oplusS3new(84,[χ])S_{3}^{\mathrm{new}}(84, [\chi])3^{\oplus 3}\oplusS3new(112,[χ])S_{3}^{\mathrm{new}}(112, [\chi])2^{\oplus 2}