Defining parameters
Level: | \( N \) | \(=\) | \( 336 = 2^{4} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 336.m (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(336, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 140 | 12 | 128 |
Cusp forms | 116 | 12 | 104 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(336, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
336.3.m.a | $4$ | $9.155$ | \(\Q(\sqrt{-3}, \sqrt{-7})\) | None | \(0\) | \(0\) | \(-20\) | \(0\) | \(q-\beta _{2}q^{3}+(-5+\beta _{1})q^{5}+\beta _{3}q^{7}-3q^{9}+\cdots\) |
336.3.m.b | $4$ | $9.155$ | \(\Q(\sqrt{-3}, \sqrt{-7})\) | None | \(0\) | \(0\) | \(-8\) | \(0\) | \(q-\beta _{2}q^{3}-2q^{5}-\beta _{3}q^{7}-3q^{9}+(4\beta _{2}+\cdots)q^{11}+\cdots\) |
336.3.m.c | $4$ | $9.155$ | \(\Q(\sqrt{-3}, \sqrt{-7})\) | None | \(0\) | \(0\) | \(4\) | \(0\) | \(q+\beta _{2}q^{3}+(1-\beta _{1})q^{5}-\beta _{3}q^{7}-3q^{9}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(336, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(336, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 2}\)