Properties

Label 336.5.bh
Level $336$
Weight $5$
Character orbit 336.bh
Rep. character $\chi_{336}(145,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $64$
Newform subspaces $9$
Sturm bound $320$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 336.bh (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 9 \)
Sturm bound: \(320\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(336, [\chi])\).

Total New Old
Modular forms 536 64 472
Cusp forms 488 64 424
Eisenstein series 48 0 48

Trace form

\( 64 q - 16 q^{7} + 864 q^{9} - 96 q^{11} - 1248 q^{19} + 2016 q^{23} + 3632 q^{25} - 1728 q^{29} - 1104 q^{31} + 2160 q^{33} - 3744 q^{35} - 1824 q^{37} + 1584 q^{39} + 4864 q^{43} - 8640 q^{47} - 5280 q^{49}+ \cdots - 5184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(336, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
336.5.bh.a 336.bh 7.d $2$ $34.732$ \(\Q(\sqrt{-3}) \) None 21.5.f.b \(0\) \(-9\) \(-3\) \(91\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-3-3\zeta_{6})q^{3}+(-2+\zeta_{6})q^{5}+(35+\cdots)q^{7}+\cdots\)
336.5.bh.b 336.bh 7.d $2$ $34.732$ \(\Q(\sqrt{-3}) \) None 21.5.f.a \(0\) \(-9\) \(18\) \(-77\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-3-3\zeta_{6})q^{3}+(12-6\zeta_{6})q^{5}+(-56+\cdots)q^{7}+\cdots\)
336.5.bh.c 336.bh 7.d $4$ $34.732$ \(\Q(\sqrt{-3}, \sqrt{-19})\) None 84.5.m.a \(0\) \(-18\) \(39\) \(70\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-6-3\beta _{2})q^{3}+(5-8\beta _{2}-3\beta _{3})q^{5}+\cdots\)
336.5.bh.d 336.bh 7.d $4$ $34.732$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 42.5.g.a \(0\) \(18\) \(-66\) \(70\) $\mathrm{SU}(2)[C_{6}]$ \(q+(6+3\beta _{1})q^{3}+(-11+11\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
336.5.bh.e 336.bh 7.d $6$ $34.732$ 6.0.\(\cdots\).2 None 84.5.m.b \(0\) \(27\) \(15\) \(-15\) $\mathrm{SU}(2)[C_{6}]$ \(q+(6-3\beta _{1})q^{3}+(1+2\beta _{1}+\beta _{3})q^{5}+\cdots\)
336.5.bh.f 336.bh 7.d $6$ $34.732$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 21.5.f.c \(0\) \(27\) \(39\) \(-23\) $\mathrm{SU}(2)[C_{6}]$ \(q+(3+3\beta _{2})q^{3}+(8+\beta _{1}-4\beta _{2}+2\beta _{3}+\cdots)q^{5}+\cdots\)
336.5.bh.g 336.bh 7.d $8$ $34.732$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 42.5.g.b \(0\) \(-36\) \(-42\) \(-76\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-3-3\beta _{1})q^{3}+(-7+4\beta _{1}+\beta _{6}+\cdots)q^{5}+\cdots\)
336.5.bh.h 336.bh 7.d $16$ $34.732$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 168.5.z.b \(0\) \(-72\) \(-12\) \(-16\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-6+3\beta _{2})q^{3}+(-1-\beta _{3})q^{5}+(-1+\cdots)q^{7}+\cdots\)
336.5.bh.i 336.bh 7.d $16$ $34.732$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 168.5.z.a \(0\) \(72\) \(12\) \(-40\) $\mathrm{SU}(2)[C_{6}]$ \(q+(6-3\beta _{1})q^{3}+(\beta _{1}+\beta _{5}+\beta _{7})q^{5}+\cdots\)

Decomposition of \(S_{5}^{\mathrm{old}}(336, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(336, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)