Properties

Label 336.6.a
Level 336336
Weight 66
Character orbit 336.a
Rep. character χ336(1,)\chi_{336}(1,\cdot)
Character field Q\Q
Dimension 3030
Newform subspaces 2424
Sturm bound 384384
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 336.a (trivial)
Character field: Q\Q
Newform subspaces: 24 24
Sturm bound: 384384
Trace bound: 77
Distinguishing TpT_p: 55, 1111

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ0(336))M_{6}(\Gamma_0(336)).

Total New Old
Modular forms 332 30 302
Cusp forms 308 30 278
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

223377FrickeDim
++++++++33
++++--44
++-++-44
++--++33
-++++-44
-++-++44
--++++33
----55
Plus space++1313
Minus space-1717

Trace form

30q76q5+98q7+2430q9604q11+244q13+900q15404q172360q19+836q23+21866q25+4492q297160q31+14412q37+12168q39+2476q41+48924q99+O(q100) 30 q - 76 q^{5} + 98 q^{7} + 2430 q^{9} - 604 q^{11} + 244 q^{13} + 900 q^{15} - 404 q^{17} - 2360 q^{19} + 836 q^{23} + 21866 q^{25} + 4492 q^{29} - 7160 q^{31} + 14412 q^{37} + 12168 q^{39} + 2476 q^{41}+ \cdots - 48924 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ0(336))S_{6}^{\mathrm{new}}(\Gamma_0(336)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 7
336.6.a.a 336.a 1.a 11 53.88953.889 Q\Q None 21.6.a.d 00 9-9 106-106 4949 - ++ - SU(2)\mathrm{SU}(2) q9q3106q5+72q7+34q9+q-9q^{3}-106q^{5}+7^{2}q^{7}+3^{4}q^{9}+\cdots
336.6.a.b 336.a 1.a 11 53.88953.889 Q\Q None 42.6.a.c 00 9-9 72-72 49-49 - ++ ++ SU(2)\mathrm{SU}(2) q9q372q572q7+34q9+414q11+q-9q^{3}-72q^{5}-7^{2}q^{7}+3^{4}q^{9}+414q^{11}+\cdots
336.6.a.c 336.a 1.a 11 53.88953.889 Q\Q None 168.6.a.d 00 9-9 64-64 49-49 ++ ++ ++ SU(2)\mathrm{SU}(2) q9q326q572q7+34q9+54q11+q-9q^{3}-2^{6}q^{5}-7^{2}q^{7}+3^{4}q^{9}+54q^{11}+\cdots
336.6.a.d 336.a 1.a 11 53.88953.889 Q\Q None 168.6.a.e 00 9-9 38-38 4949 ++ ++ - SU(2)\mathrm{SU}(2) q9q338q5+72q7+34q9600q11+q-9q^{3}-38q^{5}+7^{2}q^{7}+3^{4}q^{9}-600q^{11}+\cdots
336.6.a.e 336.a 1.a 11 53.88953.889 Q\Q None 84.6.a.b 00 9-9 34-34 4949 - ++ - SU(2)\mathrm{SU}(2) q9q334q5+72q7+34q9+332q11+q-9q^{3}-34q^{5}+7^{2}q^{7}+3^{4}q^{9}+332q^{11}+\cdots
336.6.a.f 336.a 1.a 11 53.88953.889 Q\Q None 168.6.a.f 00 9-9 1414 4949 ++ ++ - SU(2)\mathrm{SU}(2) q9q3+14q5+72q7+34q9+700q11+q-9q^{3}+14q^{5}+7^{2}q^{7}+3^{4}q^{9}+700q^{11}+\cdots
336.6.a.g 336.a 1.a 11 53.88953.889 Q\Q None 42.6.a.f 00 9-9 2424 49-49 - ++ ++ SU(2)\mathrm{SU}(2) q9q3+24q572q7+34q966q11+q-9q^{3}+24q^{5}-7^{2}q^{7}+3^{4}q^{9}-66q^{11}+\cdots
336.6.a.h 336.a 1.a 11 53.88953.889 Q\Q None 42.6.a.d 00 9-9 2626 4949 - ++ - SU(2)\mathrm{SU}(2) q9q3+26q5+72q7+34q9664q11+q-9q^{3}+26q^{5}+7^{2}q^{7}+3^{4}q^{9}-664q^{11}+\cdots
336.6.a.i 336.a 1.a 11 53.88953.889 Q\Q None 21.6.a.c 00 9-9 9494 4949 - ++ - SU(2)\mathrm{SU}(2) q9q3+94q5+72q7+34q952q11+q-9q^{3}+94q^{5}+7^{2}q^{7}+3^{4}q^{9}-52q^{11}+\cdots
336.6.a.j 336.a 1.a 11 53.88953.889 Q\Q None 42.6.a.a 00 99 54-54 49-49 - - ++ SU(2)\mathrm{SU}(2) q+9q354q572q7+34q963q11+q+9q^{3}-54q^{5}-7^{2}q^{7}+3^{4}q^{9}-6^{3}q^{11}+\cdots
336.6.a.k 336.a 1.a 11 53.88953.889 Q\Q None 168.6.a.a 00 99 34-34 49-49 ++ - ++ SU(2)\mathrm{SU}(2) q+9q334q572q7+34q9+756q11+q+9q^{3}-34q^{5}-7^{2}q^{7}+3^{4}q^{9}+756q^{11}+\cdots
336.6.a.l 336.a 1.a 11 53.88953.889 Q\Q None 21.6.a.b 00 99 34-34 4949 - - - SU(2)\mathrm{SU}(2) q+9q334q5+72q7+34q9+340q11+q+9q^{3}-34q^{5}+7^{2}q^{7}+3^{4}q^{9}+340q^{11}+\cdots
336.6.a.m 336.a 1.a 11 53.88953.889 Q\Q None 168.6.a.b 00 99 44 4949 ++ - - SU(2)\mathrm{SU}(2) q+9q3+4q5+72q7+34q9370q11+q+9q^{3}+4q^{5}+7^{2}q^{7}+3^{4}q^{9}-370q^{11}+\cdots
336.6.a.n 336.a 1.a 11 53.88953.889 Q\Q None 84.6.a.a 00 99 66 49-49 - - ++ SU(2)\mathrm{SU}(2) q+9q3+6q572q7+34q9+108q11+q+9q^{3}+6q^{5}-7^{2}q^{7}+3^{4}q^{9}+108q^{11}+\cdots
336.6.a.o 336.a 1.a 11 53.88953.889 Q\Q None 42.6.a.b 00 99 4444 4949 - - - SU(2)\mathrm{SU}(2) q+9q3+44q5+72q7+34q9+470q11+q+9q^{3}+44q^{5}+7^{2}q^{7}+3^{4}q^{9}+470q^{11}+\cdots
336.6.a.p 336.a 1.a 11 53.88953.889 Q\Q None 168.6.a.c 00 99 7474 49-49 ++ - ++ SU(2)\mathrm{SU}(2) q+9q3+74q572q7+34q963q11+q+9q^{3}+74q^{5}-7^{2}q^{7}+3^{4}q^{9}-6^{3}q^{11}+\cdots
336.6.a.q 336.a 1.a 11 53.88953.889 Q\Q None 42.6.a.e 00 99 7676 4949 - - - SU(2)\mathrm{SU}(2) q+9q3+76q5+72q7+34q9650q11+q+9q^{3}+76q^{5}+7^{2}q^{7}+3^{4}q^{9}-650q^{11}+\cdots
336.6.a.r 336.a 1.a 11 53.88953.889 Q\Q None 21.6.a.a 00 99 7878 49-49 - - ++ SU(2)\mathrm{SU}(2) q+9q3+78q572q7+34q9444q11+q+9q^{3}+78q^{5}-7^{2}q^{7}+3^{4}q^{9}-444q^{11}+\cdots
336.6.a.s 336.a 1.a 22 53.88953.889 Q(4281)\Q(\sqrt{4281}) None 168.6.a.i 00 18-18 10-10 98-98 ++ ++ ++ SU(2)\mathrm{SU}(2) q9q3+(5β)q572q7+34q9+q-9q^{3}+(-5-\beta )q^{5}-7^{2}q^{7}+3^{4}q^{9}+\cdots
336.6.a.t 336.a 1.a 22 53.88953.889 Q(1129)\Q(\sqrt{1129}) None 168.6.a.j 00 18-18 00 9898 ++ ++ - SU(2)\mathrm{SU}(2) q9q3βq5+72q7+34q9+(50+)q11+q-9q^{3}-\beta q^{5}+7^{2}q^{7}+3^{4}q^{9}+(-50+\cdots)q^{11}+\cdots
336.6.a.u 336.a 1.a 22 53.88953.889 Q(505)\Q(\sqrt{505}) None 84.6.a.d 00 18-18 7878 98-98 - ++ ++ SU(2)\mathrm{SU}(2) q9q3+(39β)q572q7+34q9+q-9q^{3}+(39-\beta )q^{5}-7^{2}q^{7}+3^{4}q^{9}+\cdots
336.6.a.v 336.a 1.a 22 53.88953.889 Q(193)\Q(\sqrt{193}) None 168.6.a.g 00 1818 78-78 9898 ++ - - SU(2)\mathrm{SU}(2) q+9q3+(395β)q5+72q7+34q9+q+9q^{3}+(-39-5\beta )q^{5}+7^{2}q^{7}+3^{4}q^{9}+\cdots
336.6.a.w 336.a 1.a 22 53.88953.889 Q(249)\Q(\sqrt{249}) None 168.6.a.h 00 1818 64-64 98-98 ++ - ++ SU(2)\mathrm{SU}(2) q+9q3+(25β)q572q7+34q9+q+9q^{3}+(-2^{5}-\beta )q^{5}-7^{2}q^{7}+3^{4}q^{9}+\cdots
336.6.a.x 336.a 1.a 22 53.88953.889 Q(5569)\Q(\sqrt{5569}) None 84.6.a.c 00 1818 6-6 9898 - - - SU(2)\mathrm{SU}(2) q+9q3+(3β)q5+72q7+34q9+q+9q^{3}+(-3-\beta )q^{5}+7^{2}q^{7}+3^{4}q^{9}+\cdots

Decomposition of S6old(Γ0(336))S_{6}^{\mathrm{old}}(\Gamma_0(336)) into lower level spaces

S6old(Γ0(336)) S_{6}^{\mathrm{old}}(\Gamma_0(336)) \simeq S6new(Γ0(3))S_{6}^{\mathrm{new}}(\Gamma_0(3))10^{\oplus 10}\oplusS6new(Γ0(4))S_{6}^{\mathrm{new}}(\Gamma_0(4))12^{\oplus 12}\oplusS6new(Γ0(6))S_{6}^{\mathrm{new}}(\Gamma_0(6))8^{\oplus 8}\oplusS6new(Γ0(7))S_{6}^{\mathrm{new}}(\Gamma_0(7))10^{\oplus 10}\oplusS6new(Γ0(8))S_{6}^{\mathrm{new}}(\Gamma_0(8))8^{\oplus 8}\oplusS6new(Γ0(14))S_{6}^{\mathrm{new}}(\Gamma_0(14))8^{\oplus 8}\oplusS6new(Γ0(16))S_{6}^{\mathrm{new}}(\Gamma_0(16))4^{\oplus 4}\oplusS6new(Γ0(21))S_{6}^{\mathrm{new}}(\Gamma_0(21))5^{\oplus 5}\oplusS6new(Γ0(24))S_{6}^{\mathrm{new}}(\Gamma_0(24))4^{\oplus 4}\oplusS6new(Γ0(28))S_{6}^{\mathrm{new}}(\Gamma_0(28))6^{\oplus 6}\oplusS6new(Γ0(42))S_{6}^{\mathrm{new}}(\Gamma_0(42))4^{\oplus 4}\oplusS6new(Γ0(48))S_{6}^{\mathrm{new}}(\Gamma_0(48))2^{\oplus 2}\oplusS6new(Γ0(56))S_{6}^{\mathrm{new}}(\Gamma_0(56))4^{\oplus 4}\oplusS6new(Γ0(84))S_{6}^{\mathrm{new}}(\Gamma_0(84))3^{\oplus 3}\oplusS6new(Γ0(112))S_{6}^{\mathrm{new}}(\Gamma_0(112))2^{\oplus 2}\oplusS6new(Γ0(168))S_{6}^{\mathrm{new}}(\Gamma_0(168))2^{\oplus 2}