Properties

Label 33600.2.a.cl
Level 3360033600
Weight 22
Character orbit 33600.a
Self dual yes
Analytic conductor 268.297268.297
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [33600,2,Mod(1,33600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(33600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("33600.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 33600=263527 33600 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 33600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 268.297350792268.297350792
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq3q7+q9+6q11+2q13+4q17+6q19+q21q27+2q2910q316q33+4q372q39+2q41+4q43+q494q516q53++6q99+O(q100) q - q^{3} - q^{7} + q^{9} + 6 q^{11} + 2 q^{13} + 4 q^{17} + 6 q^{19} + q^{21} - q^{27} + 2 q^{29} - 10 q^{31} - 6 q^{33} + 4 q^{37} - 2 q^{39} + 2 q^{41} + 4 q^{43} + q^{49} - 4 q^{51} - 6 q^{53}+ \cdots + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
55 1 -1
77 +1 +1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.