Defining parameters
Level: | \( N \) | = | \( 3364 = 2^{2} \cdot 29^{2} \) |
Weight: | \( k \) | = | \( 1 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(706440\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(3364))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3326 | 1449 | 1877 |
Cusp forms | 316 | 300 | 16 |
Eisenstein series | 3010 | 1149 | 1861 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 300 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(3364))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
3364.1.b | \(\chi_{3364}(1683, \cdot)\) | 3364.1.b.a | 2 | 1 |
3364.1.b.b | 3 | |||
3364.1.b.c | 3 | |||
3364.1.d | \(\chi_{3364}(3363, \cdot)\) | 3364.1.d.a | 6 | 1 |
3364.1.f | \(\chi_{3364}(41, \cdot)\) | None | 0 | 2 |
3364.1.h | \(\chi_{3364}(63, \cdot)\) | 3364.1.h.a | 6 | 6 |
3364.1.h.b | 6 | |||
3364.1.h.c | 12 | |||
3364.1.h.d | 12 | |||
3364.1.h.e | 12 | |||
3364.1.j | \(\chi_{3364}(571, \cdot)\) | 3364.1.j.a | 6 | 6 |
3364.1.j.b | 6 | |||
3364.1.j.c | 6 | |||
3364.1.j.d | 6 | |||
3364.1.j.e | 6 | |||
3364.1.j.f | 12 | |||
3364.1.k | \(\chi_{3364}(137, \cdot)\) | None | 0 | 12 |
3364.1.n | \(\chi_{3364}(115, \cdot)\) | None | 0 | 28 |
3364.1.p | \(\chi_{3364}(59, \cdot)\) | 3364.1.p.a | 28 | 28 |
3364.1.q | \(\chi_{3364}(17, \cdot)\) | None | 0 | 56 |
3364.1.t | \(\chi_{3364}(7, \cdot)\) | 3364.1.t.a | 168 | 168 |
3364.1.v | \(\chi_{3364}(35, \cdot)\) | None | 0 | 168 |
3364.1.x | \(\chi_{3364}(21, \cdot)\) | None | 0 | 336 |
Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(3364))\) into lower level spaces
\( S_{1}^{\mathrm{old}}(\Gamma_1(3364)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(58))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(116))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(841))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(1682))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3364))\)\(^{\oplus 1}\)