Properties

Label 3364.2.a
Level 33643364
Weight 22
Character orbit 3364.a
Rep. character χ3364(1,)\chi_{3364}(1,\cdot)
Character field Q\Q
Dimension 6767
Newform subspaces 1818
Sturm bound 870870
Trace bound 4545

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3364=22292 3364 = 2^{2} \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3364.a (trivial)
Character field: Q\Q
Newform subspaces: 18 18
Sturm bound: 870870
Trace bound: 4545
Distinguishing TpT_p: 33, 55

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(3364))M_{2}(\Gamma_0(3364)).

Total New Old
Modular forms 480 67 413
Cusp forms 391 67 324
Eisenstein series 89 0 89

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

222929FrickeDim
-++-3737
--++3030
Plus space++3030
Minus space-3737

Trace form

67q4q54q7+65q9+4q114q13+10q15+2q17+6q19+8q21+8q23+63q25+18q278q31+8q352q3718q39+6q414q43++18q99+O(q100) 67 q - 4 q^{5} - 4 q^{7} + 65 q^{9} + 4 q^{11} - 4 q^{13} + 10 q^{15} + 2 q^{17} + 6 q^{19} + 8 q^{21} + 8 q^{23} + 63 q^{25} + 18 q^{27} - 8 q^{31} + 8 q^{35} - 2 q^{37} - 18 q^{39} + 6 q^{41} - 4 q^{43}+ \cdots + 18 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(3364))S_{2}^{\mathrm{new}}(\Gamma_0(3364)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 29
3364.2.a.a 3364.a 1.a 11 26.86226.862 Q\Q None 116.2.a.c 00 2-2 2-2 44 - ++ SU(2)\mathrm{SU}(2) q2q32q5+4q7+q9+6q11+q-2q^{3}-2q^{5}+4q^{7}+q^{9}+6q^{11}+\cdots
3364.2.a.b 3364.a 1.a 11 26.86226.862 Q\Q None 116.2.a.b 00 1-1 33 4-4 - ++ SU(2)\mathrm{SU}(2) qq3+3q54q72q93q11+q-q^{3}+3q^{5}-4q^{7}-2q^{9}-3q^{11}+\cdots
3364.2.a.c 3364.a 1.a 11 26.86226.862 Q\Q None 116.2.a.a 00 33 33 44 - ++ SU(2)\mathrm{SU}(2) q+3q3+3q5+4q7+6q9+q11+q+3q^{3}+3q^{5}+4q^{7}+6q^{9}+q^{11}+\cdots
3364.2.a.d 3364.a 1.a 22 26.86226.862 Q(5)\Q(\sqrt{5}) None 3364.2.a.d 00 2-2 11 3-3 - ++ SU(2)\mathrm{SU}(2) q2βq3+(23β)q5+(2+β)q7+q-2\beta q^{3}+(2-3\beta )q^{5}+(-2+\beta )q^{7}+\cdots
3364.2.a.e 3364.a 1.a 22 26.86226.862 Q(13)\Q(\sqrt{13}) None 3364.2.a.e 00 1-1 11 22 - - SU(2)\mathrm{SU}(2) qβq3+βq5+q7+βq9+(2+β)q11+q-\beta q^{3}+\beta q^{5}+q^{7}+\beta q^{9}+(2+\beta )q^{11}+\cdots
3364.2.a.f 3364.a 1.a 22 26.86226.862 Q(7)\Q(\sqrt{7}) None 116.2.c.a 00 00 2-2 4-4 - - SU(2)\mathrm{SU}(2) q+βq3q52q7+4q9+βq11+q+\beta q^{3}-q^{5}-2q^{7}+4q^{9}+\beta q^{11}+\cdots
3364.2.a.g 3364.a 1.a 22 26.86226.862 Q(13)\Q(\sqrt{13}) None 3364.2.a.e 00 11 11 22 - ++ SU(2)\mathrm{SU}(2) q+βq3+βq5+q7+βq9+(2β)q11+q+\beta q^{3}+\beta q^{5}+q^{7}+\beta q^{9}+(-2-\beta )q^{11}+\cdots
3364.2.a.h 3364.a 1.a 22 26.86226.862 Q(5)\Q(\sqrt{5}) None 3364.2.a.d 00 22 11 3-3 - - SU(2)\mathrm{SU}(2) q+2βq3+(23β)q5+(2+β)q7+q+2\beta q^{3}+(2-3\beta )q^{5}+(-2+\beta )q^{7}+\cdots
3364.2.a.i 3364.a 1.a 33 26.86226.862 Q(ζ14)+\Q(\zeta_{14})^+ None 116.2.g.a 00 5-5 5-5 9-9 - ++ SU(2)\mathrm{SU}(2) q+(2β2)q3+(2+β1)q5+(2+)q7+q+(-2-\beta _{2})q^{3}+(-2+\beta _{1})q^{5}+(-2+\cdots)q^{7}+\cdots
3364.2.a.j 3364.a 1.a 33 26.86226.862 Q(ζ14)+\Q(\zeta_{14})^+ None 116.2.g.a 00 55 5-5 9-9 - ++ SU(2)\mathrm{SU}(2) q+(2β1)q3+(1β1+β2)q5+q+(2-\beta _{1})q^{3}+(-1-\beta _{1}+\beta _{2})q^{5}+\cdots
3364.2.a.k 3364.a 1.a 44 26.86226.862 Q(ζ15)+\Q(\zeta_{15})^+ None 3364.2.a.k 00 2-2 3-3 11 - - SU(2)\mathrm{SU}(2) q+(1+β1+β2)q3+(2+β12β3)q5+q+(-1+\beta _{1}+\beta _{2})q^{3}+(-2+\beta _{1}-2\beta _{3})q^{5}+\cdots
3364.2.a.l 3364.a 1.a 44 26.86226.862 Q(ζ15)+\Q(\zeta_{15})^+ None 3364.2.a.k 00 22 3-3 11 - ++ SU(2)\mathrm{SU}(2) q+(1β1β2)q3+(2+β12β3)q5+q+(1-\beta _{1}-\beta _{2})q^{3}+(-2+\beta _{1}-2\beta _{3})q^{5}+\cdots
3364.2.a.m 3364.a 1.a 66 26.86226.862 6.6.6456289.1 None 116.2.g.b 00 5-5 1010 77 - ++ SU(2)\mathrm{SU}(2) q+(1+β1)q3+(1β2β5)q5+q+(-1+\beta _{1})q^{3}+(1-\beta _{2}-\beta _{5})q^{5}+\cdots
3364.2.a.n 3364.a 1.a 66 26.86226.862 Q(ζ28)+\Q(\zeta_{28})^+ None 116.2.i.a 00 00 6-6 22 - - SU(2)\mathrm{SU}(2) q+β1q3+(1β2+β4)q5+(22β2+)q7+q+\beta _{1}q^{3}+(-1-\beta _{2}+\beta _{4})q^{5}+(2-2\beta _{2}+\cdots)q^{7}+\cdots
3364.2.a.o 3364.a 1.a 66 26.86226.862 Q(ζ28)+\Q(\zeta_{28})^+ None 116.2.i.b 00 00 6-6 22 - - SU(2)\mathrm{SU}(2) q+β1q3+(1+β2β4)q5+β4q7+q+\beta _{1}q^{3}+(-1+\beta _{2}-\beta _{4})q^{5}+\beta _{4}q^{7}+\cdots
3364.2.a.p 3364.a 1.a 66 26.86226.862 6.6.6456289.1 None 116.2.g.b 00 55 1010 77 - ++ SU(2)\mathrm{SU}(2) q+(1β1)q3+(1β2β5)q5+(1+)q7+q+(1-\beta _{1})q^{3}+(1-\beta _{2}-\beta _{5})q^{5}+(1+\cdots)q^{7}+\cdots
3364.2.a.q 3364.a 1.a 88 26.86226.862 8.8.3266578125.2 None 3364.2.a.q 00 4-4 1-1 2-2 - - SU(2)\mathrm{SU}(2) q+(1β3β4β5β6)q3+(1+)q5+q+(-1-\beta _{3}-\beta _{4}-\beta _{5}-\beta _{6})q^{3}+(-1+\cdots)q^{5}+\cdots
3364.2.a.r 3364.a 1.a 88 26.86226.862 8.8.3266578125.2 None 3364.2.a.q 00 44 1-1 2-2 - ++ SU(2)\mathrm{SU}(2) q+(1+β3+β4+β5+β6)q3+(1+)q5+q+(1+\beta _{3}+\beta _{4}+\beta _{5}+\beta _{6})q^{3}+(-1+\cdots)q^{5}+\cdots

Decomposition of S2old(Γ0(3364))S_{2}^{\mathrm{old}}(\Gamma_0(3364)) into lower level spaces

S2old(Γ0(3364)) S_{2}^{\mathrm{old}}(\Gamma_0(3364)) \simeq S2new(Γ0(29))S_{2}^{\mathrm{new}}(\Gamma_0(29))6^{\oplus 6}\oplusS2new(Γ0(58))S_{2}^{\mathrm{new}}(\Gamma_0(58))4^{\oplus 4}\oplusS2new(Γ0(116))S_{2}^{\mathrm{new}}(\Gamma_0(116))2^{\oplus 2}\oplusS2new(Γ0(841))S_{2}^{\mathrm{new}}(\Gamma_0(841))3^{\oplus 3}\oplusS2new(Γ0(1682))S_{2}^{\mathrm{new}}(\Gamma_0(1682))2^{\oplus 2}