Defining parameters
Level: | \( N \) | \(=\) | \( 3364 = 2^{2} \cdot 29^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3364.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(870\) | ||
Trace bound: | \(45\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3364))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 480 | 67 | 413 |
Cusp forms | 391 | 67 | 324 |
Eisenstein series | 89 | 0 | 89 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(29\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(+\) | \(-\) | \(37\) |
\(-\) | \(-\) | \(+\) | \(30\) |
Plus space | \(+\) | \(30\) | |
Minus space | \(-\) | \(37\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3364))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3364))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(3364)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(116))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(841))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1682))\)\(^{\oplus 2}\)