Defining parameters
Level: | \( N \) | \(=\) | \( 338 = 2 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 338.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 15 \) | ||
Sturm bound: | \(182\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(338))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 151 | 39 | 112 |
Cusp forms | 123 | 39 | 84 |
Eisenstein series | 28 | 0 | 28 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(11\) |
\(+\) | \(-\) | \(-\) | \(9\) |
\(-\) | \(+\) | \(-\) | \(7\) |
\(-\) | \(-\) | \(+\) | \(12\) |
Plus space | \(+\) | \(23\) | |
Minus space | \(-\) | \(16\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(338))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(338))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(338)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 2}\)