Properties

Label 338.4.a
Level 338338
Weight 44
Character orbit 338.a
Rep. character χ338(1,)\chi_{338}(1,\cdot)
Character field Q\Q
Dimension 3939
Newform subspaces 1515
Sturm bound 182182
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 338=2132 338 = 2 \cdot 13^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 338.a (trivial)
Character field: Q\Q
Newform subspaces: 15 15
Sturm bound: 182182
Trace bound: 55
Distinguishing TpT_p: 33, 55

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(338))M_{4}(\Gamma_0(338)).

Total New Old
Modular forms 151 39 112
Cusp forms 123 39 84
Eisenstein series 28 0 28

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

221313FrickeDim
++++++1111
++--99
-++-77
--++1212
Plus space++2323
Minus space-1616

Trace form

39q2q26q3+156q410q54q78q8+433q9+24q10+84q1124q12+88q14+56q15+624q16+6q17+38q18168q1940q20172q21+1160q99+O(q100) 39 q - 2 q^{2} - 6 q^{3} + 156 q^{4} - 10 q^{5} - 4 q^{7} - 8 q^{8} + 433 q^{9} + 24 q^{10} + 84 q^{11} - 24 q^{12} + 88 q^{14} + 56 q^{15} + 624 q^{16} + 6 q^{17} + 38 q^{18} - 168 q^{19} - 40 q^{20} - 172 q^{21}+ \cdots - 1160 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(338))S_{4}^{\mathrm{new}}(\Gamma_0(338)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 13
338.4.a.a 338.a 1.a 11 19.94319.943 Q\Q None 26.4.c.a 2-2 3-3 22 5-5 ++ ++ SU(2)\mathrm{SU}(2) q2q23q3+4q4+2q5+6q6+q-2q^{2}-3q^{3}+4q^{4}+2q^{5}+6q^{6}+\cdots
338.4.a.b 338.a 1.a 11 19.94319.943 Q\Q None 26.4.a.b 2-2 1-1 17-17 3535 ++ ++ SU(2)\mathrm{SU}(2) q2q2q3+4q417q5+2q6+q-2q^{2}-q^{3}+4q^{4}-17q^{5}+2q^{6}+\cdots
338.4.a.c 338.a 1.a 11 19.94319.943 Q\Q None 26.4.a.c 2-2 44 1818 20-20 ++ ++ SU(2)\mathrm{SU}(2) q2q2+4q3+4q4+18q58q6+q-2q^{2}+4q^{3}+4q^{4}+18q^{5}-8q^{6}+\cdots
338.4.a.d 338.a 1.a 11 19.94319.943 Q\Q None 26.4.c.a 22 3-3 2-2 55 - ++ SU(2)\mathrm{SU}(2) q+2q23q3+4q42q56q6+q+2q^{2}-3q^{3}+4q^{4}-2q^{5}-6q^{6}+\cdots
338.4.a.e 338.a 1.a 11 19.94319.943 Q\Q None 26.4.a.a 22 33 11-11 19-19 - ++ SU(2)\mathrm{SU}(2) q+2q2+3q3+4q411q5+6q6+q+2q^{2}+3q^{3}+4q^{4}-11q^{5}+6q^{6}+\cdots
338.4.a.f 338.a 1.a 22 19.94319.943 Q(217)\Q(\sqrt{217}) None 26.4.b.a 4-4 3-3 19-19 7-7 ++ - SU(2)\mathrm{SU}(2) q2q2+(1β)q3+4q4+(9+)q5+q-2q^{2}+(-1-\beta )q^{3}+4q^{4}+(-9+\cdots)q^{5}+\cdots
338.4.a.g 338.a 1.a 22 19.94319.943 Q(217)\Q(\sqrt{217}) None 26.4.c.b 4-4 3-3 77 4545 ++ ++ SU(2)\mathrm{SU}(2) q2q2+(1β)q3+4q4+(4β)q5+q-2q^{2}+(-1-\beta )q^{3}+4q^{4}+(4-\beta )q^{5}+\cdots
338.4.a.h 338.a 1.a 22 19.94319.943 Q(217)\Q(\sqrt{217}) None 26.4.c.b 44 3-3 7-7 45-45 - ++ SU(2)\mathrm{SU}(2) q+2q2+(1β)q3+4q4+(4+)q5+q+2q^{2}+(-1-\beta )q^{3}+4q^{4}+(-4+\cdots)q^{5}+\cdots
338.4.a.i 338.a 1.a 22 19.94319.943 Q(217)\Q(\sqrt{217}) None 26.4.b.a 44 3-3 1919 77 - - SU(2)\mathrm{SU}(2) q+2q2+(1β)q3+4q4+(9+β)q5+q+2q^{2}+(-1-\beta )q^{3}+4q^{4}+(9+\beta )q^{5}+\cdots
338.4.a.j 338.a 1.a 33 19.94319.943 Q(ζ14)+\Q(\zeta_{14})^+ None 338.4.a.j 6-6 12-12 1212 27-27 ++ - SU(2)\mathrm{SU}(2) q2q2+(53β2)q3+4q4+(1+)q5+q-2q^{2}+(-5-3\beta _{2})q^{3}+4q^{4}+(1+\cdots)q^{5}+\cdots
338.4.a.k 338.a 1.a 33 19.94319.943 Q(ζ14)+\Q(\zeta_{14})^+ None 338.4.a.j 66 12-12 12-12 2727 - ++ SU(2)\mathrm{SU}(2) q+2q2+(53β2)q3+4q4+(1+)q5+q+2q^{2}+(-5-3\beta _{2})q^{3}+4q^{4}+(-1+\cdots)q^{5}+\cdots
338.4.a.l 338.a 1.a 44 19.94319.943 4.4.1859472.2 None 26.4.e.a 8-8 66 44 20-20 ++ - SU(2)\mathrm{SU}(2) q2q2+(1+β1)q3+4q4+(2β1+)q5+q-2q^{2}+(1+\beta _{1})q^{3}+4q^{4}+(2-\beta _{1}+\cdots)q^{5}+\cdots
338.4.a.m 338.a 1.a 44 19.94319.943 4.4.1859472.2 None 26.4.e.a 88 66 4-4 2020 - - SU(2)\mathrm{SU}(2) q+2q2+(1+β1)q3+4q4+(2+β1+)q5+q+2q^{2}+(1+\beta _{1})q^{3}+4q^{4}+(-2+\beta _{1}+\cdots)q^{5}+\cdots
338.4.a.n 338.a 1.a 66 19.94319.943 6.6.6681389953.1 None 338.4.a.n 12-12 99 18-18 25-25 ++ ++ SU(2)\mathrm{SU}(2) q2q2+(1β1)q3+4q4+(3+β1+)q5+q-2q^{2}+(1-\beta _{1})q^{3}+4q^{4}+(-3+\beta _{1}+\cdots)q^{5}+\cdots
338.4.a.o 338.a 1.a 66 19.94319.943 6.6.6681389953.1 None 338.4.a.n 1212 99 1818 2525 - - SU(2)\mathrm{SU}(2) q+2q2+(1β1)q3+4q4+(3β1+)q5+q+2q^{2}+(1-\beta _{1})q^{3}+4q^{4}+(3-\beta _{1}+\cdots)q^{5}+\cdots

Decomposition of S4old(Γ0(338))S_{4}^{\mathrm{old}}(\Gamma_0(338)) into lower level spaces

S4old(Γ0(338)) S_{4}^{\mathrm{old}}(\Gamma_0(338)) \simeq S4new(Γ0(13))S_{4}^{\mathrm{new}}(\Gamma_0(13))4^{\oplus 4}\oplusS4new(Γ0(26))S_{4}^{\mathrm{new}}(\Gamma_0(26))2^{\oplus 2}\oplusS4new(Γ0(169))S_{4}^{\mathrm{new}}(\Gamma_0(169))2^{\oplus 2}