Properties

Label 338.6
Level 338
Weight 6
Dimension 5845
Nonzero newspaces 8
Sturm bound 42588
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(42588\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(338))\).

Total New Old
Modular forms 17973 5845 12128
Cusp forms 17517 5845 11672
Eisenstein series 456 0 456

Trace form

\( 5845 q - 1192 q^{7} + 384 q^{8} + 2592 q^{9} + 120 q^{10} - 2136 q^{11} - 1152 q^{12} - 3144 q^{13} - 1056 q^{14} + 4752 q^{15} + 2048 q^{16} + 1938 q^{17} + 9720 q^{18} + 10472 q^{19} - 3936 q^{20} - 264 q^{21}+ \cdots + 568872 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(338))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
338.6.a \(\chi_{338}(1, \cdot)\) 338.6.a.a 1 1
338.6.a.b 1
338.6.a.c 1
338.6.a.d 1
338.6.a.e 1
338.6.a.f 2
338.6.a.g 2
338.6.a.h 3
338.6.a.i 3
338.6.a.j 4
338.6.a.k 4
338.6.a.l 6
338.6.a.m 6
338.6.a.n 6
338.6.a.o 6
338.6.a.p 9
338.6.a.q 9
338.6.b \(\chi_{338}(337, \cdot)\) 338.6.b.a 2 1
338.6.b.b 4
338.6.b.c 4
338.6.b.d 6
338.6.b.e 8
338.6.b.f 12
338.6.b.g 12
338.6.b.h 18
338.6.c \(\chi_{338}(191, \cdot)\) n/a 126 2
338.6.e \(\chi_{338}(23, \cdot)\) n/a 128 2
338.6.g \(\chi_{338}(27, \cdot)\) n/a 900 12
338.6.h \(\chi_{338}(25, \cdot)\) n/a 888 12
338.6.i \(\chi_{338}(3, \cdot)\) n/a 1848 24
338.6.k \(\chi_{338}(17, \cdot)\) n/a 1824 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(338))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(338)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 1}\)