Properties

Label 338.6
Level 338
Weight 6
Dimension 5845
Nonzero newspaces 8
Sturm bound 42588
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 338=2132 338 = 2 \cdot 13^{2}
Weight: k k = 6 6
Nonzero newspaces: 8 8
Sturm bound: 4258842588
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ1(338))M_{6}(\Gamma_1(338)).

Total New Old
Modular forms 17973 5845 12128
Cusp forms 17517 5845 11672
Eisenstein series 456 0 456

Trace form

5845q1192q7+384q8+2592q9+120q102136q111152q123144q131056q14+4752q15+2048q16+1938q17+9720q18+10472q193936q20264q21++568872q99+O(q100) 5845 q - 1192 q^{7} + 384 q^{8} + 2592 q^{9} + 120 q^{10} - 2136 q^{11} - 1152 q^{12} - 3144 q^{13} - 1056 q^{14} + 4752 q^{15} + 2048 q^{16} + 1938 q^{17} + 9720 q^{18} + 10472 q^{19} - 3936 q^{20} - 264 q^{21}+ \cdots + 568872 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ1(338))S_{6}^{\mathrm{new}}(\Gamma_1(338))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
338.6.a χ338(1,)\chi_{338}(1, \cdot) 338.6.a.a 1 1
338.6.a.b 1
338.6.a.c 1
338.6.a.d 1
338.6.a.e 1
338.6.a.f 2
338.6.a.g 2
338.6.a.h 3
338.6.a.i 3
338.6.a.j 4
338.6.a.k 4
338.6.a.l 6
338.6.a.m 6
338.6.a.n 6
338.6.a.o 6
338.6.a.p 9
338.6.a.q 9
338.6.b χ338(337,)\chi_{338}(337, \cdot) 338.6.b.a 2 1
338.6.b.b 4
338.6.b.c 4
338.6.b.d 6
338.6.b.e 8
338.6.b.f 12
338.6.b.g 12
338.6.b.h 18
338.6.c χ338(191,)\chi_{338}(191, \cdot) n/a 126 2
338.6.e χ338(23,)\chi_{338}(23, \cdot) n/a 128 2
338.6.g χ338(27,)\chi_{338}(27, \cdot) n/a 900 12
338.6.h χ338(25,)\chi_{338}(25, \cdot) n/a 888 12
338.6.i χ338(3,)\chi_{338}(3, \cdot) n/a 1848 24
338.6.k χ338(17,)\chi_{338}(17, \cdot) n/a 1824 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S6old(Γ1(338))S_{6}^{\mathrm{old}}(\Gamma_1(338)) into lower level spaces

S6old(Γ1(338)) S_{6}^{\mathrm{old}}(\Gamma_1(338)) \cong S6new(Γ1(1))S_{6}^{\mathrm{new}}(\Gamma_1(1))6^{\oplus 6}\oplusS6new(Γ1(2))S_{6}^{\mathrm{new}}(\Gamma_1(2))3^{\oplus 3}\oplusS6new(Γ1(13))S_{6}^{\mathrm{new}}(\Gamma_1(13))4^{\oplus 4}\oplusS6new(Γ1(26))S_{6}^{\mathrm{new}}(\Gamma_1(26))2^{\oplus 2}\oplusS6new(Γ1(169))S_{6}^{\mathrm{new}}(\Gamma_1(169))2^{\oplus 2}