Defining parameters
Level: | \( N \) | = | \( 338 = 2 \cdot 13^{2} \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(42588\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(338))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 17973 | 5845 | 12128 |
Cusp forms | 17517 | 5845 | 11672 |
Eisenstein series | 456 | 0 | 456 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(338))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
338.6.a | \(\chi_{338}(1, \cdot)\) | 338.6.a.a | 1 | 1 |
338.6.a.b | 1 | |||
338.6.a.c | 1 | |||
338.6.a.d | 1 | |||
338.6.a.e | 1 | |||
338.6.a.f | 2 | |||
338.6.a.g | 2 | |||
338.6.a.h | 3 | |||
338.6.a.i | 3 | |||
338.6.a.j | 4 | |||
338.6.a.k | 4 | |||
338.6.a.l | 6 | |||
338.6.a.m | 6 | |||
338.6.a.n | 6 | |||
338.6.a.o | 6 | |||
338.6.a.p | 9 | |||
338.6.a.q | 9 | |||
338.6.b | \(\chi_{338}(337, \cdot)\) | 338.6.b.a | 2 | 1 |
338.6.b.b | 4 | |||
338.6.b.c | 4 | |||
338.6.b.d | 6 | |||
338.6.b.e | 8 | |||
338.6.b.f | 12 | |||
338.6.b.g | 12 | |||
338.6.b.h | 18 | |||
338.6.c | \(\chi_{338}(191, \cdot)\) | n/a | 126 | 2 |
338.6.e | \(\chi_{338}(23, \cdot)\) | n/a | 128 | 2 |
338.6.g | \(\chi_{338}(27, \cdot)\) | n/a | 900 | 12 |
338.6.h | \(\chi_{338}(25, \cdot)\) | n/a | 888 | 12 |
338.6.i | \(\chi_{338}(3, \cdot)\) | n/a | 1848 | 24 |
338.6.k | \(\chi_{338}(17, \cdot)\) | n/a | 1824 | 24 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(338))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(338)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 1}\)