Properties

Label 338.8
Level 338
Weight 8
Dimension 8184
Nonzero newspaces 8
Sturm bound 56784
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(56784\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(338))\).

Total New Old
Modular forms 25071 8184 16887
Cusp forms 24615 8184 16431
Eisenstein series 456 0 456

Trace form

\( 8184 q - 8 q^{2} + 12 q^{3} + 64 q^{4} - 210 q^{5} - 96 q^{6} - 5040 q^{7} + 2560 q^{8} - 25371 q^{9} - 18240 q^{10} + 16908 q^{11} + 14592 q^{12} + 29928 q^{13} - 29824 q^{14} - 167112 q^{15} - 28672 q^{16}+ \cdots - 72270756 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(338))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
338.8.a \(\chi_{338}(1, \cdot)\) 338.8.a.a 1 1
338.8.a.b 1
338.8.a.c 1
338.8.a.d 1
338.8.a.e 2
338.8.a.f 2
338.8.a.g 3
338.8.a.h 3
338.8.a.i 4
338.8.a.j 4
338.8.a.k 5
338.8.a.l 5
338.8.a.m 8
338.8.a.n 8
338.8.a.o 9
338.8.a.p 9
338.8.a.q 12
338.8.a.r 12
338.8.b \(\chi_{338}(337, \cdot)\) 338.8.b.a 2 1
338.8.b.b 2
338.8.b.c 2
338.8.b.d 2
338.8.b.e 4
338.8.b.f 4
338.8.b.g 6
338.8.b.h 8
338.8.b.i 16
338.8.b.j 18
338.8.b.k 24
338.8.c \(\chi_{338}(191, \cdot)\) n/a 182 2
338.8.e \(\chi_{338}(23, \cdot)\) n/a 180 2
338.8.g \(\chi_{338}(27, \cdot)\) n/a 1284 12
338.8.h \(\chi_{338}(25, \cdot)\) n/a 1296 12
338.8.i \(\chi_{338}(3, \cdot)\) n/a 2520 24
338.8.k \(\chi_{338}(17, \cdot)\) n/a 2544 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(338))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(338)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 1}\)