Defining parameters
Level: | \( N \) | \(=\) | \( 34 = 2 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 34.d (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(9\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(34, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 28 | 4 | 24 |
Cusp forms | 12 | 4 | 8 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(34, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
34.2.d.a | $4$ | $0.271$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(-8\) | \(0\) | \(q+\zeta_{8}^{3}q^{2}+(\zeta_{8}^{2}-\zeta_{8}^{3})q^{3}-\zeta_{8}^{2}q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(34, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(34, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 2}\)