Properties

Label 340.2
Level 340
Weight 2
Dimension 1746
Nonzero newspaces 18
Newform subspaces 36
Sturm bound 13824
Trace bound 27

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 340 = 2^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 18 \)
Newform subspaces: \( 36 \)
Sturm bound: \(13824\)
Trace bound: \(27\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(340))\).

Total New Old
Modular forms 3776 1922 1854
Cusp forms 3137 1746 1391
Eisenstein series 639 176 463

Trace form

\( 1746 q - 12 q^{2} + 4 q^{3} - 16 q^{4} - 38 q^{5} - 48 q^{6} - 4 q^{7} - 24 q^{8} - 34 q^{9} - 36 q^{10} + 16 q^{11} - 16 q^{12} - 16 q^{13} - 16 q^{14} + 20 q^{15} - 48 q^{16} - 16 q^{17} - 20 q^{18} + 24 q^{19}+ \cdots - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(340))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
340.2.a \(\chi_{340}(1, \cdot)\) 340.2.a.a 1 1
340.2.a.b 3
340.2.c \(\chi_{340}(101, \cdot)\) 340.2.c.a 6 1
340.2.e \(\chi_{340}(69, \cdot)\) 340.2.e.a 8 1
340.2.g \(\chi_{340}(169, \cdot)\) 340.2.g.a 8 1
340.2.i \(\chi_{340}(47, \cdot)\) 340.2.i.a 2 2
340.2.i.b 2
340.2.i.c 96
340.2.l \(\chi_{340}(103, \cdot)\) 340.2.l.a 8 2
340.2.l.b 88
340.2.m \(\chi_{340}(89, \cdot)\) 340.2.m.a 2 2
340.2.m.b 2
340.2.m.c 12
340.2.o \(\chi_{340}(21, \cdot)\) 340.2.o.a 12 2
340.2.r \(\chi_{340}(67, \cdot)\) 340.2.r.a 2 2
340.2.r.b 2
340.2.r.c 96
340.2.s \(\chi_{340}(183, \cdot)\) 340.2.s.a 2 2
340.2.s.b 2
340.2.s.c 96
340.2.u \(\chi_{340}(121, \cdot)\) 340.2.u.a 24 4
340.2.w \(\chi_{340}(83, \cdot)\) 340.2.w.a 4 4
340.2.w.b 4
340.2.w.c 8
340.2.w.d 184
340.2.z \(\chi_{340}(43, \cdot)\) 340.2.z.a 4 4
340.2.z.b 4
340.2.z.c 8
340.2.z.d 184
340.2.bb \(\chi_{340}(9, \cdot)\) 340.2.bb.a 40 4
340.2.bd \(\chi_{340}(57, \cdot)\) 340.2.bd.a 72 8
340.2.bf \(\chi_{340}(11, \cdot)\) 340.2.bf.a 288 8
340.2.bg \(\chi_{340}(39, \cdot)\) 340.2.bg.a 8 8
340.2.bg.b 8
340.2.bg.c 384
340.2.bi \(\chi_{340}(37, \cdot)\) 340.2.bi.a 72 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(340))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(340)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(170))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(340))\)\(^{\oplus 1}\)