Properties

Label 3400.1.y
Level $3400$
Weight $1$
Character orbit 3400.y
Rep. character $\chi_{3400}(251,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $10$
Newform subspaces $3$
Sturm bound $540$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3400 = 2^{3} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3400.y (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 136 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(540\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3400, [\chi])\).

Total New Old
Modular forms 40 22 18
Cusp forms 16 10 6
Eisenstein series 24 12 12

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 10 0 0 0

Trace form

\( 10 q + 2 q^{3} - 10 q^{4} + 2 q^{6} - 2 q^{11} - 2 q^{12} + 10 q^{16} - 2 q^{18} + 2 q^{22} - 2 q^{24} + 4 q^{33} + 2 q^{34} - 4 q^{38} + 2 q^{41} + 2 q^{44} + 2 q^{48} - 10 q^{51} + 12 q^{54} - 4 q^{57}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3400, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3400.1.y.a 3400.y 136.j $2$ $1.697$ \(\Q(\sqrt{-1}) \) $D_{4}$ \(\Q(\sqrt{-2}) \) None 136.1.j.a \(0\) \(2\) \(0\) \(0\) \(q-i q^{2}+(-i+1)q^{3}-q^{4}+(-i-1)q^{6}+\cdots\)
3400.1.y.b 3400.y 136.j $4$ $1.697$ \(\Q(\zeta_{12})\) $D_{12}$ \(\Q(\sqrt{-2}) \) None 3400.1.y.b \(0\) \(-2\) \(0\) \(0\) \(q-\zeta_{12}^{3}q^{2}+(\zeta_{12}^{4}+\zeta_{12}^{5})q^{3}-q^{4}+\cdots\)
3400.1.y.c 3400.y 136.j $4$ $1.697$ \(\Q(\zeta_{12})\) $D_{12}$ \(\Q(\sqrt{-2}) \) None 3400.1.y.b \(0\) \(2\) \(0\) \(0\) \(q+\zeta_{12}^{3}q^{2}+(-\zeta_{12}+\zeta_{12}^{2})q^{3}-q^{4}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3400, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3400, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 3}\)