Properties

Label 342.2.x
Level 342342
Weight 22
Character orbit 342.x
Rep. character χ342(29,)\chi_{342}(29,\cdot)
Character field Q(ζ18)\Q(\zeta_{18})
Dimension 120120
Newform subspaces 33
Sturm bound 120120
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 342=23219 342 = 2 \cdot 3^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 342.x (of order 1818 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 171 171
Character field: Q(ζ18)\Q(\zeta_{18})
Newform subspaces: 3 3
Sturm bound: 120120
Trace bound: 11
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M2(342,[χ])M_{2}(342, [\chi]).

Total New Old
Modular forms 384 120 264
Cusp forms 336 120 216
Eisenstein series 48 0 48

Trace form

120q6q36q6+6q9+6q13+48q1554q1736q18+6q199q22+36q23+3q249q27+6q28+48q33+6q366q396q4354q45++39q99+O(q100) 120 q - 6 q^{3} - 6 q^{6} + 6 q^{9} + 6 q^{13} + 48 q^{15} - 54 q^{17} - 36 q^{18} + 6 q^{19} - 9 q^{22} + 36 q^{23} + 3 q^{24} - 9 q^{27} + 6 q^{28} + 48 q^{33} + 6 q^{36} - 6 q^{39} - 6 q^{43} - 54 q^{45}+ \cdots + 39 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(342,[χ])S_{2}^{\mathrm{new}}(342, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
342.2.x.a 342.x 171.x 1212 2.7312.731 12.0.\cdots.1 None 342.2.x.a 00 66 99 9-9 SU(2)[C18]\mathrm{SU}(2)[C_{18}] q+β9q2+(β5β6)q3+(β6β10+)q4+q+\beta _{9}q^{2}+(\beta _{5}-\beta _{6})q^{3}+(\beta _{6}-\beta _{10}+\cdots)q^{4}+\cdots
342.2.x.b 342.x 171.x 4848 2.7312.731 None 342.2.x.b 00 6-6 9-9 99 SU(2)[C18]\mathrm{SU}(2)[C_{18}]
342.2.x.c 342.x 171.x 6060 2.7312.731 None 342.2.x.c 00 6-6 00 00 SU(2)[C18]\mathrm{SU}(2)[C_{18}]

Decomposition of S2old(342,[χ])S_{2}^{\mathrm{old}}(342, [\chi]) into lower level spaces

S2old(342,[χ]) S_{2}^{\mathrm{old}}(342, [\chi]) \simeq S2new(171,[χ])S_{2}^{\mathrm{new}}(171, [\chi])2^{\oplus 2}