Properties

Label 342.2.x
Level $342$
Weight $2$
Character orbit 342.x
Rep. character $\chi_{342}(29,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $120$
Newform subspaces $3$
Sturm bound $120$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 342.x (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 171 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 3 \)
Sturm bound: \(120\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(342, [\chi])\).

Total New Old
Modular forms 384 120 264
Cusp forms 336 120 216
Eisenstein series 48 0 48

Trace form

\( 120 q - 6 q^{3} - 6 q^{6} + 6 q^{9} + 6 q^{13} + 48 q^{15} - 54 q^{17} - 36 q^{18} + 6 q^{19} - 9 q^{22} + 36 q^{23} + 3 q^{24} - 9 q^{27} + 6 q^{28} + 48 q^{33} + 6 q^{36} - 6 q^{39} - 6 q^{43} - 54 q^{45}+ \cdots + 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(342, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
342.2.x.a 342.x 171.x $12$ $2.731$ 12.0.\(\cdots\).1 None 342.2.x.a \(0\) \(6\) \(9\) \(-9\) $\mathrm{SU}(2)[C_{18}]$ \(q+\beta _{9}q^{2}+(\beta _{5}-\beta _{6})q^{3}+(\beta _{6}-\beta _{10}+\cdots)q^{4}+\cdots\)
342.2.x.b 342.x 171.x $48$ $2.731$ None 342.2.x.b \(0\) \(-6\) \(-9\) \(9\) $\mathrm{SU}(2)[C_{18}]$
342.2.x.c 342.x 171.x $60$ $2.731$ None 342.2.x.c \(0\) \(-6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{2}^{\mathrm{old}}(342, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(342, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 2}\)