Defining parameters
Level: | \( N \) | \(=\) | \( 342 = 2 \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 342.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(360\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(342))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 308 | 37 | 271 |
Cusp forms | 292 | 37 | 255 |
Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(19\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(3\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(6\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(5\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(5\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(7\) |
Plus space | \(+\) | \(17\) | ||
Minus space | \(-\) | \(20\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(342))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(342))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(342)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 2}\)