Properties

Label 342.6.a
Level $342$
Weight $6$
Character orbit 342.a
Rep. character $\chi_{342}(1,\cdot)$
Character field $\Q$
Dimension $37$
Newform subspaces $17$
Sturm bound $360$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 342.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 17 \)
Sturm bound: \(360\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(342))\).

Total New Old
Modular forms 308 37 271
Cusp forms 292 37 255
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(19\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(5\)
\(-\)\(+\)\(+\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(5\)
\(-\)\(-\)\(-\)\(-\)\(7\)
Plus space\(+\)\(17\)
Minus space\(-\)\(20\)

Trace form

\( 37 q + 4 q^{2} + 592 q^{4} - 110 q^{5} + 42 q^{7} + 64 q^{8} - 808 q^{10} - 716 q^{11} + 542 q^{13} - 80 q^{14} + 9472 q^{16} + 996 q^{17} - 361 q^{19} - 1760 q^{20} + 1424 q^{22} + 8314 q^{23} + 15263 q^{25}+ \cdots + 168388 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(342))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 19
342.6.a.a 342.a 1.a $1$ $54.851$ \(\Q\) None 114.6.a.c \(-4\) \(0\) \(-21\) \(-143\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}-21q^{5}-143q^{7}+\cdots\)
342.6.a.b 342.a 1.a $1$ $54.851$ \(\Q\) None 38.6.a.b \(-4\) \(0\) \(45\) \(-121\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+45q^{5}-11^{2}q^{7}+\cdots\)
342.6.a.c 342.a 1.a $1$ $54.851$ \(\Q\) None 114.6.a.d \(-4\) \(0\) \(91\) \(-33\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+91q^{5}-33q^{7}-2^{6}q^{8}+\cdots\)
342.6.a.d 342.a 1.a $1$ $54.851$ \(\Q\) None 114.6.a.b \(4\) \(0\) \(-81\) \(-247\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}-3^{4}q^{5}-247q^{7}+\cdots\)
342.6.a.e 342.a 1.a $1$ $54.851$ \(\Q\) None 38.6.a.a \(4\) \(0\) \(-31\) \(-27\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}-31q^{5}-3^{3}q^{7}+2^{6}q^{8}+\cdots\)
342.6.a.f 342.a 1.a $1$ $54.851$ \(\Q\) None 114.6.a.a \(4\) \(0\) \(54\) \(104\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+54q^{5}+104q^{7}+\cdots\)
342.6.a.g 342.a 1.a $2$ $54.851$ \(\Q(\sqrt{2441}) \) None 114.6.a.g \(-8\) \(0\) \(5\) \(-105\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(3+\beta )q^{5}+(-53+\cdots)q^{7}+\cdots\)
342.6.a.h 342.a 1.a $2$ $54.851$ \(\Q(\sqrt{201}) \) None 114.6.a.e \(8\) \(0\) \(13\) \(-33\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+(4+5\beta )q^{5}+(-22+\cdots)q^{7}+\cdots\)
342.6.a.i 342.a 1.a $2$ $54.851$ \(\Q(\sqrt{1441}) \) None 38.6.a.c \(8\) \(0\) \(45\) \(114\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+(24-3\beta )q^{5}+(59+\cdots)q^{7}+\cdots\)
342.6.a.j 342.a 1.a $2$ $54.851$ \(\Q(\sqrt{4089}) \) None 114.6.a.f \(8\) \(0\) \(49\) \(-105\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+(5^{2}-\beta )q^{5}+(-55+\cdots)q^{7}+\cdots\)
342.6.a.k 342.a 1.a $3$ $54.851$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 114.6.a.i \(-12\) \(0\) \(-135\) \(125\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(-45+\beta _{1})q^{5}+(42+\cdots)q^{7}+\cdots\)
342.6.a.l 342.a 1.a $3$ $54.851$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 38.6.a.d \(-12\) \(0\) \(-81\) \(228\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(-3^{3}-\beta _{1})q^{5}+(76+\cdots)q^{7}+\cdots\)
342.6.a.m 342.a 1.a $3$ $54.851$ 3.3.364092.1 None 342.6.a.m \(-12\) \(0\) \(96\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(33-3\beta _{1}+\beta _{2})q^{5}+\cdots\)
342.6.a.n 342.a 1.a $3$ $54.851$ 3.3.364092.1 None 342.6.a.m \(12\) \(0\) \(-96\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+(-33+3\beta _{1}-\beta _{2})q^{5}+\cdots\)
342.6.a.o 342.a 1.a $3$ $54.851$ 3.3.2922585.1 None 114.6.a.h \(12\) \(0\) \(-63\) \(125\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+(-21-\beta _{1}+\beta _{2})q^{5}+\cdots\)
342.6.a.p 342.a 1.a $4$ $54.851$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 342.6.a.p \(-16\) \(0\) \(46\) \(78\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(11+\beta _{2})q^{5}+(20+\cdots)q^{7}+\cdots\)
342.6.a.q 342.a 1.a $4$ $54.851$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 342.6.a.p \(16\) \(0\) \(-46\) \(78\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+(-11-\beta _{2})q^{5}+(20+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(342))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(342)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 2}\)