Properties

Label 345.1
Level 345
Weight 1
Dimension 20
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 8448
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 345 = 3 \cdot 5 \cdot 23 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(8448\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(345))\).

Total New Old
Modular forms 376 148 228
Cusp forms 24 20 4
Eisenstein series 352 128 224

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 20 0 0 0

Trace form

\( 20 q - 6 q^{4} - 4 q^{6} - 2 q^{9} - 4 q^{10} - 2 q^{15} - 10 q^{16} - 4 q^{19} - 8 q^{24} - 2 q^{25} - 4 q^{31} + 14 q^{34} - 6 q^{36} + 14 q^{40} - 4 q^{46} - 2 q^{49} - 4 q^{51} + 18 q^{54} + 16 q^{60}+ \cdots + 10 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(345))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
345.1.d \(\chi_{345}(229, \cdot)\) None 0 1
345.1.e \(\chi_{345}(116, \cdot)\) None 0 1
345.1.f \(\chi_{345}(254, \cdot)\) None 0 1
345.1.g \(\chi_{345}(91, \cdot)\) None 0 1
345.1.k \(\chi_{345}(208, \cdot)\) None 0 2
345.1.l \(\chi_{345}(68, \cdot)\) None 0 2
345.1.o \(\chi_{345}(61, \cdot)\) None 0 10
345.1.p \(\chi_{345}(29, \cdot)\) 345.1.p.a 10 10
345.1.p.b 10
345.1.q \(\chi_{345}(26, \cdot)\) None 0 10
345.1.r \(\chi_{345}(19, \cdot)\) None 0 10
345.1.u \(\chi_{345}(17, \cdot)\) None 0 20
345.1.v \(\chi_{345}(13, \cdot)\) None 0 20

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(345))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(345)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(345))\)\(^{\oplus 1}\)