Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M10(Γ0(35)).
|
Total |
New |
Old |
Modular forms
| 38 |
18 |
20 |
Cusp forms
| 34 |
18 |
16 |
Eisenstein series
| 4 |
0 |
4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
5 | 7 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 8 | 4 | 4 | | 7 | 4 | 3 | | 1 | 0 | 1 |
+ | − | − | | 10 | 5 | 5 | | 9 | 5 | 4 | | 1 | 0 | 1 |
− | + | − | | 11 | 6 | 5 | | 10 | 6 | 4 | | 1 | 0 | 1 |
− | − | + | | 9 | 3 | 6 | | 8 | 3 | 5 | | 1 | 0 | 1 |
Plus space | + | | 17 | 7 | 10 | | 15 | 7 | 8 | | 2 | 0 | 2 |
Minus space | − | | 21 | 11 | 10 | | 19 | 11 | 8 | | 2 | 0 | 2 |
Decomposition of S10new(Γ0(35)) into newform subspaces
Decomposition of S10old(Γ0(35)) into lower level spaces