Properties

Label 35.10.a
Level $35$
Weight $10$
Character orbit 35.a
Rep. character $\chi_{35}(1,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $5$
Sturm bound $40$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(40\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(35))\).

Total New Old
Modular forms 38 18 20
Cusp forms 34 18 16
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(4\)
\(+\)\(-\)\(-\)\(5\)
\(-\)\(+\)\(-\)\(6\)
\(-\)\(-\)\(+\)\(3\)
Plus space\(+\)\(7\)
Minus space\(-\)\(11\)

Trace form

\( 18 q + 2 q^{2} - 292 q^{3} + 5122 q^{4} + 4304 q^{6} - 4802 q^{7} - 8766 q^{8} + 200470 q^{9} + 22500 q^{10} + 37972 q^{11} - 426588 q^{12} + 94448 q^{13} + 24010 q^{14} - 335000 q^{15} + 1693970 q^{16}+ \cdots + 4488271832 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(35))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 7
35.10.a.a 35.a 1.a $1$ $18.026$ \(\Q\) None 35.10.a.a \(28\) \(-116\) \(625\) \(2401\) $-$ $-$ $\mathrm{SU}(2)$ \(q+28q^{2}-116q^{3}+272q^{4}+5^{4}q^{5}+\cdots\)
35.10.a.b 35.a 1.a $2$ $18.026$ \(\Q(\sqrt{2}) \) None 35.10.a.b \(-24\) \(-174\) \(1250\) \(4802\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-12+\beta )q^{2}+(-87+54\beta )q^{3}+\cdots\)
35.10.a.c 35.a 1.a $4$ $18.026$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 35.10.a.c \(-19\) \(-18\) \(-2500\) \(-9604\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-5-\beta _{1})q^{2}+(-4+\beta _{2})q^{3}+(435+\cdots)q^{4}+\cdots\)
35.10.a.d 35.a 1.a $5$ $18.026$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 35.10.a.d \(2\) \(140\) \(-3125\) \(12005\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(28+\beta _{2})q^{3}+(168-4\beta _{1}+\cdots)q^{4}+\cdots\)
35.10.a.e 35.a 1.a $6$ $18.026$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 35.10.a.e \(15\) \(-124\) \(3750\) \(-14406\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(3-\beta _{1})q^{2}+(-20-\beta _{1}+\beta _{2})q^{3}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(35))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(35)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)