Defining parameters
Level: | \( N \) | \(=\) | \( 35 = 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 35.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(35))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 38 | 18 | 20 |
Cusp forms | 34 | 18 | 16 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(-\) | \(-\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(6\) |
\(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(7\) | |
Minus space | \(-\) | \(11\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(35))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 5 | 7 | |||||||
35.10.a.a | $1$ | $18.026$ | \(\Q\) | None | \(28\) | \(-116\) | \(625\) | \(2401\) | $-$ | $-$ | \(q+28q^{2}-116q^{3}+272q^{4}+5^{4}q^{5}+\cdots\) | |
35.10.a.b | $2$ | $18.026$ | \(\Q(\sqrt{2}) \) | None | \(-24\) | \(-174\) | \(1250\) | \(4802\) | $-$ | $-$ | \(q+(-12+\beta )q^{2}+(-87+54\beta )q^{3}+\cdots\) | |
35.10.a.c | $4$ | $18.026$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(-19\) | \(-18\) | \(-2500\) | \(-9604\) | $+$ | $+$ | \(q+(-5-\beta _{1})q^{2}+(-4+\beta _{2})q^{3}+(435+\cdots)q^{4}+\cdots\) | |
35.10.a.d | $5$ | $18.026$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(2\) | \(140\) | \(-3125\) | \(12005\) | $+$ | $-$ | \(q+\beta _{1}q^{2}+(28+\beta _{2})q^{3}+(168-4\beta _{1}+\cdots)q^{4}+\cdots\) | |
35.10.a.e | $6$ | $18.026$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(15\) | \(-124\) | \(3750\) | \(-14406\) | $-$ | $+$ | \(q+(3-\beta _{1})q^{2}+(-20-\beta _{1}+\beta _{2})q^{3}+\cdots\) |
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(35))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(35)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)