Properties

Label 35.10.a
Level 3535
Weight 1010
Character orbit 35.a
Rep. character χ35(1,)\chi_{35}(1,\cdot)
Character field Q\Q
Dimension 1818
Newform subspaces 55
Sturm bound 4040
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 35=57 35 = 5 \cdot 7
Weight: k k == 10 10
Character orbit: [χ][\chi] == 35.a (trivial)
Character field: Q\Q
Newform subspaces: 5 5
Sturm bound: 4040
Trace bound: 11
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M10(Γ0(35))M_{10}(\Gamma_0(35)).

Total New Old
Modular forms 38 18 20
Cusp forms 34 18 16
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

5577FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++884444774433110011
++--10105555995544110011
-++-1111665510106644110011
--++993366883355110011
Plus space++171777101015157788220022
Minus space-2121111110101919111188220022

Trace form

18q+2q2292q3+5122q4+4304q64802q78766q8+200470q9+22500q10+37972q11426588q12+94448q13+24010q14335000q15+1693970q16++4488271832q99+O(q100) 18 q + 2 q^{2} - 292 q^{3} + 5122 q^{4} + 4304 q^{6} - 4802 q^{7} - 8766 q^{8} + 200470 q^{9} + 22500 q^{10} + 37972 q^{11} - 426588 q^{12} + 94448 q^{13} + 24010 q^{14} - 335000 q^{15} + 1693970 q^{16}+ \cdots + 4488271832 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S10new(Γ0(35))S_{10}^{\mathrm{new}}(\Gamma_0(35)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 5 7
35.10.a.a 35.a 1.a 11 18.02618.026 Q\Q None 35.10.a.a 2828 116-116 625625 24012401 - - SU(2)\mathrm{SU}(2) q+28q2116q3+272q4+54q5+q+28q^{2}-116q^{3}+272q^{4}+5^{4}q^{5}+\cdots
35.10.a.b 35.a 1.a 22 18.02618.026 Q(2)\Q(\sqrt{2}) None 35.10.a.b 24-24 174-174 12501250 48024802 - - SU(2)\mathrm{SU}(2) q+(12+β)q2+(87+54β)q3+q+(-12+\beta )q^{2}+(-87+54\beta )q^{3}+\cdots
35.10.a.c 35.a 1.a 44 18.02618.026 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 35.10.a.c 19-19 18-18 2500-2500 9604-9604 ++ ++ SU(2)\mathrm{SU}(2) q+(5β1)q2+(4+β2)q3+(435+)q4+q+(-5-\beta _{1})q^{2}+(-4+\beta _{2})q^{3}+(435+\cdots)q^{4}+\cdots
35.10.a.d 35.a 1.a 55 18.02618.026 Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots) None 35.10.a.d 22 140140 3125-3125 1200512005 ++ - SU(2)\mathrm{SU}(2) q+β1q2+(28+β2)q3+(1684β1+)q4+q+\beta _{1}q^{2}+(28+\beta _{2})q^{3}+(168-4\beta _{1}+\cdots)q^{4}+\cdots
35.10.a.e 35.a 1.a 66 18.02618.026 Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots) None 35.10.a.e 1515 124-124 37503750 14406-14406 - ++ SU(2)\mathrm{SU}(2) q+(3β1)q2+(20β1+β2)q3+q+(3-\beta _{1})q^{2}+(-20-\beta _{1}+\beta _{2})q^{3}+\cdots

Decomposition of S10old(Γ0(35))S_{10}^{\mathrm{old}}(\Gamma_0(35)) into lower level spaces

S10old(Γ0(35)) S_{10}^{\mathrm{old}}(\Gamma_0(35)) \simeq S10new(Γ0(5))S_{10}^{\mathrm{new}}(\Gamma_0(5))2^{\oplus 2}\oplusS10new(Γ0(7))S_{10}^{\mathrm{new}}(\Gamma_0(7))2^{\oplus 2}