Properties

Label 35.10.e
Level $35$
Weight $10$
Character orbit 35.e
Rep. character $\chi_{35}(11,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $48$
Newform subspaces $2$
Sturm bound $40$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 35.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(40\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(35, [\chi])\).

Total New Old
Modular forms 76 48 28
Cusp forms 68 48 20
Eisenstein series 8 0 8

Trace form

\( 48 q + 34 q^{2} - 324 q^{3} - 6314 q^{4} - 1250 q^{5} + 4544 q^{6} - 3876 q^{7} - 67932 q^{8} - 141414 q^{9} - 20000 q^{10} - 78910 q^{11} - 193502 q^{12} + 639344 q^{13} + 424970 q^{14} + 265000 q^{15}+ \cdots + 8874667164 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(35, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
35.10.e.a 35.e 7.c $22$ $18.026$ None 35.10.e.a \(33\) \(-56\) \(6875\) \(4586\) $\mathrm{SU}(2)[C_{3}]$
35.10.e.b 35.e 7.c $26$ $18.026$ None 35.10.e.b \(1\) \(-268\) \(-8125\) \(-8462\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{10}^{\mathrm{old}}(35, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(35, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 2}\)