Defining parameters
Level: | \( N \) | \(=\) | \( 35 = 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 35.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(35, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 76 | 48 | 28 |
Cusp forms | 68 | 48 | 20 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(35, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
35.10.e.a | $22$ | $18.026$ | None | \(33\) | \(-56\) | \(6875\) | \(4586\) | ||
35.10.e.b | $26$ | $18.026$ | None | \(1\) | \(-268\) | \(-8125\) | \(-8462\) |
Decomposition of \(S_{10}^{\mathrm{old}}(35, [\chi])\) into lower level spaces
\( S_{10}^{\mathrm{old}}(35, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 2}\)