Properties

Label 35.2
Level 35
Weight 2
Dimension 25
Nonzero newspaces 6
Newform subspaces 8
Sturm bound 192
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 35 = 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 8 \)
Sturm bound: \(192\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(35))\).

Total New Old
Modular forms 72 57 15
Cusp forms 25 25 0
Eisenstein series 47 32 15

Trace form

\( 25 q - 9 q^{2} - 8 q^{3} - 5 q^{4} - 7 q^{5} - 12 q^{6} - 5 q^{7} - 9 q^{8} + q^{9} + 3 q^{10} - 12 q^{11} + 16 q^{12} + 2 q^{13} + 9 q^{14} - 4 q^{15} + 7 q^{16} + 6 q^{17} + 27 q^{18} + 8 q^{19} + 23 q^{20}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(35))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
35.2.a \(\chi_{35}(1, \cdot)\) 35.2.a.a 1 1
35.2.a.b 2
35.2.b \(\chi_{35}(29, \cdot)\) 35.2.b.a 2 1
35.2.e \(\chi_{35}(11, \cdot)\) 35.2.e.a 4 2
35.2.f \(\chi_{35}(13, \cdot)\) 35.2.f.a 4 2
35.2.j \(\chi_{35}(4, \cdot)\) 35.2.j.a 4 2
35.2.k \(\chi_{35}(3, \cdot)\) 35.2.k.a 4 4
35.2.k.b 4