Properties

Label 35.2
Level 35
Weight 2
Dimension 25
Nonzero newspaces 6
Newform subspaces 8
Sturm bound 192
Trace bound 2

Downloads

Learn more

Defining parameters

Level: N N = 35=57 35 = 5 \cdot 7
Weight: k k = 2 2
Nonzero newspaces: 6 6
Newform subspaces: 8 8
Sturm bound: 192192
Trace bound: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(35))M_{2}(\Gamma_1(35)).

Total New Old
Modular forms 72 57 15
Cusp forms 25 25 0
Eisenstein series 47 32 15

Trace form

25q9q28q35q47q512q65q79q8+q9+3q1012q11+16q12+2q13+9q144q15+7q16+6q17+27q18+8q19+23q20++36q99+O(q100) 25 q - 9 q^{2} - 8 q^{3} - 5 q^{4} - 7 q^{5} - 12 q^{6} - 5 q^{7} - 9 q^{8} + q^{9} + 3 q^{10} - 12 q^{11} + 16 q^{12} + 2 q^{13} + 9 q^{14} - 4 q^{15} + 7 q^{16} + 6 q^{17} + 27 q^{18} + 8 q^{19} + 23 q^{20}+ \cdots + 36 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(35))S_{2}^{\mathrm{new}}(\Gamma_1(35))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
35.2.a χ35(1,)\chi_{35}(1, \cdot) 35.2.a.a 1 1
35.2.a.b 2
35.2.b χ35(29,)\chi_{35}(29, \cdot) 35.2.b.a 2 1
35.2.e χ35(11,)\chi_{35}(11, \cdot) 35.2.e.a 4 2
35.2.f χ35(13,)\chi_{35}(13, \cdot) 35.2.f.a 4 2
35.2.j χ35(4,)\chi_{35}(4, \cdot) 35.2.j.a 4 2
35.2.k χ35(3,)\chi_{35}(3, \cdot) 35.2.k.a 4 4
35.2.k.b 4