Properties

Label 35.4.a
Level $35$
Weight $4$
Character orbit 35.a
Rep. character $\chi_{35}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $3$
Sturm bound $16$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(16\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(35))\).

Total New Old
Modular forms 14 6 8
Cusp forms 10 6 4
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(3\)
Plus space\(+\)\(5\)
Minus space\(-\)\(1\)

Trace form

\( 6 q + 6 q^{2} - 4 q^{3} + 26 q^{4} + 8 q^{6} + 14 q^{7} + 18 q^{8} + 130 q^{9} - 60 q^{10} - 76 q^{11} - 204 q^{12} + 16 q^{13} - 70 q^{14} + 40 q^{15} + 130 q^{16} - 196 q^{17} - 358 q^{18} + 244 q^{19}+ \cdots - 2104 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(35))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 7
35.4.a.a 35.a 1.a $1$ $2.065$ \(\Q\) None 35.4.a.a \(1\) \(-8\) \(-5\) \(7\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-8q^{3}-7q^{4}-5q^{5}-8q^{6}+\cdots\)
35.4.a.b 35.a 1.a $2$ $2.065$ \(\Q(\sqrt{2}) \) None 35.4.a.b \(8\) \(2\) \(-10\) \(-14\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(4+\beta )q^{2}+(1-4\beta )q^{3}+(10+8\beta )q^{4}+\cdots\)
35.4.a.c 35.a 1.a $3$ $2.065$ 3.3.14360.1 None 35.4.a.c \(-3\) \(2\) \(15\) \(21\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(1+\beta _{1}-\beta _{2})q^{3}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(35))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(35)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)