Properties

Label 35.4.a
Level 3535
Weight 44
Character orbit 35.a
Rep. character χ35(1,)\chi_{35}(1,\cdot)
Character field Q\Q
Dimension 66
Newform subspaces 33
Sturm bound 1616
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 35=57 35 = 5 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 35.a (trivial)
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 1616
Trace bound: 11
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(35))M_{4}(\Gamma_0(35)).

Total New Old
Modular forms 14 6 8
Cusp forms 10 6 4
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

5577FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++552233442222110011
++--331122221111110011
-++-220022110011110011
--++443311333300110011
Plus space++995544775522220022
Minus space-551144331122220022

Trace form

6q+6q24q3+26q4+8q6+14q7+18q8+130q960q1076q11204q12+16q1370q14+40q15+130q16196q17358q18+244q19+2104q99+O(q100) 6 q + 6 q^{2} - 4 q^{3} + 26 q^{4} + 8 q^{6} + 14 q^{7} + 18 q^{8} + 130 q^{9} - 60 q^{10} - 76 q^{11} - 204 q^{12} + 16 q^{13} - 70 q^{14} + 40 q^{15} + 130 q^{16} - 196 q^{17} - 358 q^{18} + 244 q^{19}+ \cdots - 2104 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(35))S_{4}^{\mathrm{new}}(\Gamma_0(35)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 5 7
35.4.a.a 35.a 1.a 11 2.0652.065 Q\Q None 35.4.a.a 11 8-8 5-5 77 ++ - SU(2)\mathrm{SU}(2) q+q28q37q45q58q6+q+q^{2}-8q^{3}-7q^{4}-5q^{5}-8q^{6}+\cdots
35.4.a.b 35.a 1.a 22 2.0652.065 Q(2)\Q(\sqrt{2}) None 35.4.a.b 88 22 10-10 14-14 ++ ++ SU(2)\mathrm{SU}(2) q+(4+β)q2+(14β)q3+(10+8β)q4+q+(4+\beta )q^{2}+(1-4\beta )q^{3}+(10+8\beta )q^{4}+\cdots
35.4.a.c 35.a 1.a 33 2.0652.065 3.3.14360.1 None 35.4.a.c 3-3 22 1515 2121 - - SU(2)\mathrm{SU}(2) q+(1+β1)q2+(1+β1β2)q3+q+(-1+\beta _{1})q^{2}+(1+\beta _{1}-\beta _{2})q^{3}+\cdots

Decomposition of S4old(Γ0(35))S_{4}^{\mathrm{old}}(\Gamma_0(35)) into lower level spaces

S4old(Γ0(35)) S_{4}^{\mathrm{old}}(\Gamma_0(35)) \simeq S4new(Γ0(5))S_{4}^{\mathrm{new}}(\Gamma_0(5))2^{\oplus 2}\oplusS4new(Γ0(7))S_{4}^{\mathrm{new}}(\Gamma_0(7))2^{\oplus 2}