Defining parameters
Level: | \( N \) | \(=\) | \( 35 = 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 35.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(16\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(35))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14 | 6 | 8 |
Cusp forms | 10 | 6 | 4 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(5\) | |
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(35))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 5 | 7 | |||||||
35.4.a.a | $1$ | $2.065$ | \(\Q\) | None | \(1\) | \(-8\) | \(-5\) | \(7\) | $+$ | $-$ | \(q+q^{2}-8q^{3}-7q^{4}-5q^{5}-8q^{6}+\cdots\) | |
35.4.a.b | $2$ | $2.065$ | \(\Q(\sqrt{2}) \) | None | \(8\) | \(2\) | \(-10\) | \(-14\) | $+$ | $+$ | \(q+(4+\beta )q^{2}+(1-4\beta )q^{3}+(10+8\beta )q^{4}+\cdots\) | |
35.4.a.c | $3$ | $2.065$ | 3.3.14360.1 | None | \(-3\) | \(2\) | \(15\) | \(21\) | $-$ | $-$ | \(q+(-1+\beta _{1})q^{2}+(1+\beta _{1}-\beta _{2})q^{3}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(35))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(35)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)