Properties

Label 350.4.h
Level $350$
Weight $4$
Character orbit 350.h
Rep. character $\chi_{350}(71,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $184$
Sturm bound $240$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 350.h (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Sturm bound: \(240\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(350, [\chi])\).

Total New Old
Modular forms 736 184 552
Cusp forms 704 184 520
Eisenstein series 32 0 32

Trace form

\( 184 q + 4 q^{2} - 16 q^{3} - 184 q^{4} - 54 q^{5} + 16 q^{8} - 322 q^{9} - 4 q^{10} - 44 q^{11} + 96 q^{12} - 116 q^{13} - 56 q^{14} + 268 q^{15} - 736 q^{16} + 68 q^{17} - 736 q^{18} - 144 q^{19} - 96 q^{20}+ \cdots + 3304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(350, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(350, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(350, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 2}\)