Properties

Label 350.6.a.s.1.1
Level $350$
Weight $6$
Character 350.1
Self dual yes
Analytic conductor $56.134$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(1,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.1343369345\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{79}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 79 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-8.88819\) of defining polynomial
Character \(\chi\) \(=\) 350.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -27.7764 q^{3} +16.0000 q^{4} -111.106 q^{6} +49.0000 q^{7} +64.0000 q^{8} +528.528 q^{9} -481.671 q^{11} -444.422 q^{12} -883.515 q^{13} +196.000 q^{14} +256.000 q^{16} +1840.82 q^{17} +2114.11 q^{18} +2440.51 q^{19} -1361.04 q^{21} -1926.68 q^{22} -169.274 q^{23} -1777.69 q^{24} -3534.06 q^{26} -7930.93 q^{27} +784.000 q^{28} -554.156 q^{29} +7734.52 q^{31} +1024.00 q^{32} +13379.1 q^{33} +7363.28 q^{34} +8456.44 q^{36} -11425.8 q^{37} +9762.03 q^{38} +24540.9 q^{39} +10893.6 q^{41} -5444.17 q^{42} -15335.5 q^{43} -7706.73 q^{44} -677.094 q^{46} -9705.85 q^{47} -7110.76 q^{48} +2401.00 q^{49} -51131.3 q^{51} -14136.2 q^{52} -8829.12 q^{53} -31723.7 q^{54} +3136.00 q^{56} -67788.5 q^{57} -2216.62 q^{58} -40580.0 q^{59} -1675.50 q^{61} +30938.1 q^{62} +25897.9 q^{63} +4096.00 q^{64} +53516.3 q^{66} -9885.31 q^{67} +29453.1 q^{68} +4701.81 q^{69} -51350.0 q^{71} +33825.8 q^{72} -26718.3 q^{73} -45703.2 q^{74} +39048.1 q^{76} -23601.9 q^{77} +98163.5 q^{78} -70237.0 q^{79} +91860.4 q^{81} +43574.3 q^{82} -58622.5 q^{83} -21776.7 q^{84} -61342.0 q^{86} +15392.4 q^{87} -30826.9 q^{88} +28370.7 q^{89} -43292.2 q^{91} -2708.38 q^{92} -214837. q^{93} -38823.4 q^{94} -28443.0 q^{96} +117548. q^{97} +9604.00 q^{98} -254576. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 20 q^{3} + 32 q^{4} - 80 q^{6} + 98 q^{7} + 128 q^{8} + 346 q^{9} - 1070 q^{11} - 320 q^{12} - 736 q^{13} + 392 q^{14} + 512 q^{16} + 1904 q^{17} + 1384 q^{18} + 828 q^{19} - 980 q^{21}+ \cdots - 147190 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −27.7764 −1.78186 −0.890928 0.454144i \(-0.849945\pi\)
−0.890928 + 0.454144i \(0.849945\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) −111.106 −1.25996
\(7\) 49.0000 0.377964
\(8\) 64.0000 0.353553
\(9\) 528.528 2.17501
\(10\) 0 0
\(11\) −481.671 −1.20024 −0.600121 0.799909i \(-0.704881\pi\)
−0.600121 + 0.799909i \(0.704881\pi\)
\(12\) −444.422 −0.890928
\(13\) −883.515 −1.44996 −0.724979 0.688771i \(-0.758151\pi\)
−0.724979 + 0.688771i \(0.758151\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1840.82 1.54486 0.772430 0.635100i \(-0.219041\pi\)
0.772430 + 0.635100i \(0.219041\pi\)
\(18\) 2114.11 1.53797
\(19\) 2440.51 1.55094 0.775472 0.631382i \(-0.217512\pi\)
0.775472 + 0.631382i \(0.217512\pi\)
\(20\) 0 0
\(21\) −1361.04 −0.673478
\(22\) −1926.68 −0.848699
\(23\) −169.274 −0.0667221 −0.0333610 0.999443i \(-0.510621\pi\)
−0.0333610 + 0.999443i \(0.510621\pi\)
\(24\) −1777.69 −0.629981
\(25\) 0 0
\(26\) −3534.06 −1.02528
\(27\) −7930.93 −2.09370
\(28\) 784.000 0.188982
\(29\) −554.156 −0.122359 −0.0611796 0.998127i \(-0.519486\pi\)
−0.0611796 + 0.998127i \(0.519486\pi\)
\(30\) 0 0
\(31\) 7734.52 1.44554 0.722768 0.691091i \(-0.242869\pi\)
0.722768 + 0.691091i \(0.242869\pi\)
\(32\) 1024.00 0.176777
\(33\) 13379.1 2.13866
\(34\) 7363.28 1.09238
\(35\) 0 0
\(36\) 8456.44 1.08751
\(37\) −11425.8 −1.37209 −0.686044 0.727560i \(-0.740654\pi\)
−0.686044 + 0.727560i \(0.740654\pi\)
\(38\) 9762.03 1.09668
\(39\) 24540.9 2.58362
\(40\) 0 0
\(41\) 10893.6 1.01207 0.506036 0.862512i \(-0.331110\pi\)
0.506036 + 0.862512i \(0.331110\pi\)
\(42\) −5444.17 −0.476221
\(43\) −15335.5 −1.26481 −0.632407 0.774636i \(-0.717933\pi\)
−0.632407 + 0.774636i \(0.717933\pi\)
\(44\) −7706.73 −0.600121
\(45\) 0 0
\(46\) −677.094 −0.0471796
\(47\) −9705.85 −0.640898 −0.320449 0.947266i \(-0.603834\pi\)
−0.320449 + 0.947266i \(0.603834\pi\)
\(48\) −7110.76 −0.445464
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −51131.3 −2.75272
\(52\) −14136.2 −0.724979
\(53\) −8829.12 −0.431746 −0.215873 0.976422i \(-0.569260\pi\)
−0.215873 + 0.976422i \(0.569260\pi\)
\(54\) −31723.7 −1.48047
\(55\) 0 0
\(56\) 3136.00 0.133631
\(57\) −67788.5 −2.76356
\(58\) −2216.62 −0.0865210
\(59\) −40580.0 −1.51769 −0.758843 0.651273i \(-0.774235\pi\)
−0.758843 + 0.651273i \(0.774235\pi\)
\(60\) 0 0
\(61\) −1675.50 −0.0576527 −0.0288263 0.999584i \(-0.509177\pi\)
−0.0288263 + 0.999584i \(0.509177\pi\)
\(62\) 30938.1 1.02215
\(63\) 25897.9 0.822077
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) 53516.3 1.51226
\(67\) −9885.31 −0.269032 −0.134516 0.990911i \(-0.542948\pi\)
−0.134516 + 0.990911i \(0.542948\pi\)
\(68\) 29453.1 0.772430
\(69\) 4701.81 0.118889
\(70\) 0 0
\(71\) −51350.0 −1.20891 −0.604456 0.796638i \(-0.706610\pi\)
−0.604456 + 0.796638i \(0.706610\pi\)
\(72\) 33825.8 0.768983
\(73\) −26718.3 −0.586816 −0.293408 0.955987i \(-0.594789\pi\)
−0.293408 + 0.955987i \(0.594789\pi\)
\(74\) −45703.2 −0.970213
\(75\) 0 0
\(76\) 39048.1 0.775472
\(77\) −23601.9 −0.453649
\(78\) 98163.5 1.82689
\(79\) −70237.0 −1.26619 −0.633094 0.774075i \(-0.718215\pi\)
−0.633094 + 0.774075i \(0.718215\pi\)
\(80\) 0 0
\(81\) 91860.4 1.55566
\(82\) 43574.3 0.715643
\(83\) −58622.5 −0.934047 −0.467024 0.884245i \(-0.654674\pi\)
−0.467024 + 0.884245i \(0.654674\pi\)
\(84\) −21776.7 −0.336739
\(85\) 0 0
\(86\) −61342.0 −0.894358
\(87\) 15392.4 0.218027
\(88\) −30826.9 −0.424349
\(89\) 28370.7 0.379661 0.189830 0.981817i \(-0.439206\pi\)
0.189830 + 0.981817i \(0.439206\pi\)
\(90\) 0 0
\(91\) −43292.2 −0.548033
\(92\) −2708.38 −0.0333610
\(93\) −214837. −2.57574
\(94\) −38823.4 −0.453183
\(95\) 0 0
\(96\) −28443.0 −0.314991
\(97\) 117548. 1.26849 0.634243 0.773134i \(-0.281312\pi\)
0.634243 + 0.773134i \(0.281312\pi\)
\(98\) 9604.00 0.101015
\(99\) −254576. −2.61054
\(100\) 0 0
\(101\) −25228.5 −0.246087 −0.123043 0.992401i \(-0.539265\pi\)
−0.123043 + 0.992401i \(0.539265\pi\)
\(102\) −204525. −1.94646
\(103\) −99166.7 −0.921028 −0.460514 0.887653i \(-0.652335\pi\)
−0.460514 + 0.887653i \(0.652335\pi\)
\(104\) −56545.0 −0.512638
\(105\) 0 0
\(106\) −35316.5 −0.305290
\(107\) −127493. −1.07653 −0.538264 0.842776i \(-0.680920\pi\)
−0.538264 + 0.842776i \(0.680920\pi\)
\(108\) −126895. −1.04685
\(109\) 147420. 1.18848 0.594238 0.804289i \(-0.297454\pi\)
0.594238 + 0.804289i \(0.297454\pi\)
\(110\) 0 0
\(111\) 317367. 2.44486
\(112\) 12544.0 0.0944911
\(113\) 88159.3 0.649489 0.324745 0.945802i \(-0.394722\pi\)
0.324745 + 0.945802i \(0.394722\pi\)
\(114\) −271154. −1.95413
\(115\) 0 0
\(116\) −8866.49 −0.0611796
\(117\) −466962. −3.15368
\(118\) −162320. −1.07317
\(119\) 90200.2 0.583902
\(120\) 0 0
\(121\) 70955.8 0.440580
\(122\) −6701.99 −0.0407666
\(123\) −302585. −1.80337
\(124\) 123752. 0.722768
\(125\) 0 0
\(126\) 103591. 0.581296
\(127\) −89172.9 −0.490595 −0.245298 0.969448i \(-0.578886\pi\)
−0.245298 + 0.969448i \(0.578886\pi\)
\(128\) 16384.0 0.0883883
\(129\) 425965. 2.25372
\(130\) 0 0
\(131\) 298138. 1.51789 0.758944 0.651156i \(-0.225716\pi\)
0.758944 + 0.651156i \(0.225716\pi\)
\(132\) 214065. 1.06933
\(133\) 119585. 0.586202
\(134\) −39541.3 −0.190234
\(135\) 0 0
\(136\) 117812. 0.546190
\(137\) 23992.0 0.109211 0.0546053 0.998508i \(-0.482610\pi\)
0.0546053 + 0.998508i \(0.482610\pi\)
\(138\) 18807.2 0.0840673
\(139\) −376423. −1.65249 −0.826245 0.563311i \(-0.809527\pi\)
−0.826245 + 0.563311i \(0.809527\pi\)
\(140\) 0 0
\(141\) 269593. 1.14199
\(142\) −205400. −0.854830
\(143\) 425564. 1.74030
\(144\) 135303. 0.543753
\(145\) 0 0
\(146\) −106873. −0.414942
\(147\) −66691.1 −0.254551
\(148\) −182813. −0.686044
\(149\) −8717.80 −0.0321693 −0.0160846 0.999871i \(-0.505120\pi\)
−0.0160846 + 0.999871i \(0.505120\pi\)
\(150\) 0 0
\(151\) −447551. −1.59735 −0.798676 0.601762i \(-0.794466\pi\)
−0.798676 + 0.601762i \(0.794466\pi\)
\(152\) 156193. 0.548342
\(153\) 972924. 3.36009
\(154\) −94407.5 −0.320778
\(155\) 0 0
\(156\) 392654. 1.29181
\(157\) −63881.6 −0.206836 −0.103418 0.994638i \(-0.532978\pi\)
−0.103418 + 0.994638i \(0.532978\pi\)
\(158\) −280948. −0.895330
\(159\) 245241. 0.769308
\(160\) 0 0
\(161\) −8294.41 −0.0252186
\(162\) 367441. 1.10002
\(163\) 270208. 0.796581 0.398290 0.917259i \(-0.369604\pi\)
0.398290 + 0.917259i \(0.369604\pi\)
\(164\) 174297. 0.506036
\(165\) 0 0
\(166\) −234490. −0.660471
\(167\) −575770. −1.59756 −0.798781 0.601622i \(-0.794521\pi\)
−0.798781 + 0.601622i \(0.794521\pi\)
\(168\) −87106.8 −0.238111
\(169\) 409306. 1.10238
\(170\) 0 0
\(171\) 1.28988e6 3.37332
\(172\) −245368. −0.632407
\(173\) −408907. −1.03875 −0.519373 0.854548i \(-0.673835\pi\)
−0.519373 + 0.854548i \(0.673835\pi\)
\(174\) 61569.8 0.154168
\(175\) 0 0
\(176\) −123308. −0.300060
\(177\) 1.12717e6 2.70430
\(178\) 113483. 0.268461
\(179\) 701240. 1.63581 0.817907 0.575350i \(-0.195134\pi\)
0.817907 + 0.575350i \(0.195134\pi\)
\(180\) 0 0
\(181\) −653879. −1.48355 −0.741773 0.670652i \(-0.766015\pi\)
−0.741773 + 0.670652i \(0.766015\pi\)
\(182\) −173169. −0.387518
\(183\) 46539.3 0.102729
\(184\) −10833.5 −0.0235898
\(185\) 0 0
\(186\) −859348. −1.82132
\(187\) −886669. −1.85420
\(188\) −155294. −0.320449
\(189\) −388616. −0.791345
\(190\) 0 0
\(191\) −205677. −0.407946 −0.203973 0.978977i \(-0.565385\pi\)
−0.203973 + 0.978977i \(0.565385\pi\)
\(192\) −113772. −0.222732
\(193\) −163999. −0.316918 −0.158459 0.987366i \(-0.550653\pi\)
−0.158459 + 0.987366i \(0.550653\pi\)
\(194\) 470191. 0.896954
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 77300.2 0.141911 0.0709553 0.997479i \(-0.477395\pi\)
0.0709553 + 0.997479i \(0.477395\pi\)
\(198\) −1.01831e6 −1.84593
\(199\) −466915. −0.835806 −0.417903 0.908492i \(-0.637235\pi\)
−0.417903 + 0.908492i \(0.637235\pi\)
\(200\) 0 0
\(201\) 274578. 0.479376
\(202\) −100914. −0.174010
\(203\) −27153.6 −0.0462474
\(204\) −818101. −1.37636
\(205\) 0 0
\(206\) −396667. −0.651265
\(207\) −89465.8 −0.145121
\(208\) −226180. −0.362490
\(209\) −1.17552e6 −1.86151
\(210\) 0 0
\(211\) 1.09847e6 1.69857 0.849284 0.527935i \(-0.177034\pi\)
0.849284 + 0.527935i \(0.177034\pi\)
\(212\) −141266. −0.215873
\(213\) 1.42632e6 2.15411
\(214\) −509970. −0.761221
\(215\) 0 0
\(216\) −507580. −0.740235
\(217\) 378991. 0.546361
\(218\) 589680. 0.840379
\(219\) 742138. 1.04562
\(220\) 0 0
\(221\) −1.62639e6 −2.23998
\(222\) 1.26947e6 1.72878
\(223\) 1.33836e6 1.80224 0.901119 0.433573i \(-0.142747\pi\)
0.901119 + 0.433573i \(0.142747\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) 352637. 0.459258
\(227\) 1.06702e6 1.37438 0.687189 0.726479i \(-0.258844\pi\)
0.687189 + 0.726479i \(0.258844\pi\)
\(228\) −1.08462e6 −1.38178
\(229\) 395172. 0.497964 0.248982 0.968508i \(-0.419904\pi\)
0.248982 + 0.968508i \(0.419904\pi\)
\(230\) 0 0
\(231\) 655575. 0.808337
\(232\) −35466.0 −0.0432605
\(233\) −1.40396e6 −1.69420 −0.847099 0.531436i \(-0.821653\pi\)
−0.847099 + 0.531436i \(0.821653\pi\)
\(234\) −1.86785e6 −2.22999
\(235\) 0 0
\(236\) −649280. −0.758843
\(237\) 1.95093e6 2.25616
\(238\) 360801. 0.412881
\(239\) −617173. −0.698896 −0.349448 0.936956i \(-0.613631\pi\)
−0.349448 + 0.936956i \(0.613631\pi\)
\(240\) 0 0
\(241\) −1.16204e6 −1.28878 −0.644390 0.764697i \(-0.722889\pi\)
−0.644390 + 0.764697i \(0.722889\pi\)
\(242\) 283823. 0.311537
\(243\) −624333. −0.678267
\(244\) −26808.0 −0.0288263
\(245\) 0 0
\(246\) −1.21034e6 −1.27517
\(247\) −2.15623e6 −2.24881
\(248\) 495009. 0.511074
\(249\) 1.62832e6 1.66434
\(250\) 0 0
\(251\) −1.39683e6 −1.39946 −0.699730 0.714407i \(-0.746697\pi\)
−0.699730 + 0.714407i \(0.746697\pi\)
\(252\) 414366. 0.411039
\(253\) 81534.2 0.0800826
\(254\) −356692. −0.346903
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 566476. 0.534994 0.267497 0.963559i \(-0.413803\pi\)
0.267497 + 0.963559i \(0.413803\pi\)
\(258\) 1.70386e6 1.59362
\(259\) −559864. −0.518601
\(260\) 0 0
\(261\) −292887. −0.266133
\(262\) 1.19255e6 1.07331
\(263\) −670643. −0.597864 −0.298932 0.954274i \(-0.596630\pi\)
−0.298932 + 0.954274i \(0.596630\pi\)
\(264\) 856261. 0.756130
\(265\) 0 0
\(266\) 478340. 0.414507
\(267\) −788036. −0.676501
\(268\) −158165. −0.134516
\(269\) 19288.8 0.0162526 0.00812632 0.999967i \(-0.497413\pi\)
0.00812632 + 0.999967i \(0.497413\pi\)
\(270\) 0 0
\(271\) −1.92342e6 −1.59093 −0.795466 0.605999i \(-0.792774\pi\)
−0.795466 + 0.605999i \(0.792774\pi\)
\(272\) 471250. 0.386215
\(273\) 1.20250e6 0.976516
\(274\) 95968.0 0.0772236
\(275\) 0 0
\(276\) 75229.0 0.0594446
\(277\) −1.07324e6 −0.840423 −0.420212 0.907426i \(-0.638044\pi\)
−0.420212 + 0.907426i \(0.638044\pi\)
\(278\) −1.50569e6 −1.16849
\(279\) 4.08791e6 3.14406
\(280\) 0 0
\(281\) 1.05444e6 0.796627 0.398313 0.917249i \(-0.369596\pi\)
0.398313 + 0.917249i \(0.369596\pi\)
\(282\) 1.07837e6 0.807508
\(283\) −2.29016e6 −1.69981 −0.849904 0.526937i \(-0.823340\pi\)
−0.849904 + 0.526937i \(0.823340\pi\)
\(284\) −821600. −0.604456
\(285\) 0 0
\(286\) 1.70225e6 1.23058
\(287\) 533786. 0.382527
\(288\) 541212. 0.384491
\(289\) 1.96876e6 1.38659
\(290\) 0 0
\(291\) −3.26506e6 −2.26026
\(292\) −427493. −0.293408
\(293\) 2.41541e6 1.64370 0.821848 0.569707i \(-0.192944\pi\)
0.821848 + 0.569707i \(0.192944\pi\)
\(294\) −266764. −0.179995
\(295\) 0 0
\(296\) −731251. −0.485106
\(297\) 3.82010e6 2.51295
\(298\) −34871.2 −0.0227471
\(299\) 149556. 0.0967443
\(300\) 0 0
\(301\) −751439. −0.478055
\(302\) −1.79021e6 −1.12950
\(303\) 700757. 0.438491
\(304\) 624770. 0.387736
\(305\) 0 0
\(306\) 3.89170e6 2.37594
\(307\) 810075. 0.490545 0.245273 0.969454i \(-0.421123\pi\)
0.245273 + 0.969454i \(0.421123\pi\)
\(308\) −377630. −0.226824
\(309\) 2.75449e6 1.64114
\(310\) 0 0
\(311\) 2.00540e6 1.17571 0.587856 0.808966i \(-0.299972\pi\)
0.587856 + 0.808966i \(0.299972\pi\)
\(312\) 1.57062e6 0.913447
\(313\) 657277. 0.379217 0.189608 0.981860i \(-0.439278\pi\)
0.189608 + 0.981860i \(0.439278\pi\)
\(314\) −255526. −0.146255
\(315\) 0 0
\(316\) −1.12379e6 −0.633094
\(317\) −312965. −0.174923 −0.0874616 0.996168i \(-0.527876\pi\)
−0.0874616 + 0.996168i \(0.527876\pi\)
\(318\) 980965. 0.543983
\(319\) 266921. 0.146861
\(320\) 0 0
\(321\) 3.54128e6 1.91822
\(322\) −33177.6 −0.0178322
\(323\) 4.49254e6 2.39599
\(324\) 1.46977e6 0.777832
\(325\) 0 0
\(326\) 1.08083e6 0.563267
\(327\) −4.09480e6 −2.11769
\(328\) 697190. 0.357821
\(329\) −475587. −0.242237
\(330\) 0 0
\(331\) −252813. −0.126832 −0.0634162 0.997987i \(-0.520200\pi\)
−0.0634162 + 0.997987i \(0.520200\pi\)
\(332\) −937959. −0.467024
\(333\) −6.03885e6 −2.98431
\(334\) −2.30308e6 −1.12965
\(335\) 0 0
\(336\) −348427. −0.168370
\(337\) 748958. 0.359238 0.179619 0.983736i \(-0.442513\pi\)
0.179619 + 0.983736i \(0.442513\pi\)
\(338\) 1.63722e6 0.779501
\(339\) −2.44875e6 −1.15730
\(340\) 0 0
\(341\) −3.72549e6 −1.73499
\(342\) 5.15951e6 2.38530
\(343\) 117649. 0.0539949
\(344\) −981471. −0.447179
\(345\) 0 0
\(346\) −1.63563e6 −0.734505
\(347\) 772587. 0.344448 0.172224 0.985058i \(-0.444905\pi\)
0.172224 + 0.985058i \(0.444905\pi\)
\(348\) 246279. 0.109013
\(349\) 2.00308e6 0.880309 0.440155 0.897922i \(-0.354924\pi\)
0.440155 + 0.897922i \(0.354924\pi\)
\(350\) 0 0
\(351\) 7.00710e6 3.03578
\(352\) −493231. −0.212175
\(353\) 1.10664e6 0.472684 0.236342 0.971670i \(-0.424052\pi\)
0.236342 + 0.971670i \(0.424052\pi\)
\(354\) 4.50867e6 1.91223
\(355\) 0 0
\(356\) 453932. 0.189830
\(357\) −2.50543e6 −1.04043
\(358\) 2.80496e6 1.15670
\(359\) −4.22306e6 −1.72938 −0.864692 0.502302i \(-0.832486\pi\)
−0.864692 + 0.502302i \(0.832486\pi\)
\(360\) 0 0
\(361\) 3.47998e6 1.40543
\(362\) −2.61551e6 −1.04902
\(363\) −1.97090e6 −0.785050
\(364\) −692676. −0.274016
\(365\) 0 0
\(366\) 186157. 0.0726402
\(367\) −721326. −0.279555 −0.139777 0.990183i \(-0.544639\pi\)
−0.139777 + 0.990183i \(0.544639\pi\)
\(368\) −43334.0 −0.0166805
\(369\) 5.75756e6 2.20127
\(370\) 0 0
\(371\) −432627. −0.163184
\(372\) −3.43739e6 −1.28787
\(373\) 2.91702e6 1.08559 0.542797 0.839864i \(-0.317365\pi\)
0.542797 + 0.839864i \(0.317365\pi\)
\(374\) −3.54668e6 −1.31112
\(375\) 0 0
\(376\) −621174. −0.226592
\(377\) 489605. 0.177416
\(378\) −1.55446e6 −0.559565
\(379\) −75909.9 −0.0271457 −0.0135728 0.999908i \(-0.504321\pi\)
−0.0135728 + 0.999908i \(0.504321\pi\)
\(380\) 0 0
\(381\) 2.47690e6 0.874170
\(382\) −822708. −0.288461
\(383\) 1.48698e6 0.517974 0.258987 0.965881i \(-0.416611\pi\)
0.258987 + 0.965881i \(0.416611\pi\)
\(384\) −455088. −0.157495
\(385\) 0 0
\(386\) −655995. −0.224095
\(387\) −8.10523e6 −2.75098
\(388\) 1.88077e6 0.634243
\(389\) 2.38812e6 0.800169 0.400084 0.916478i \(-0.368981\pi\)
0.400084 + 0.916478i \(0.368981\pi\)
\(390\) 0 0
\(391\) −311602. −0.103076
\(392\) 153664. 0.0505076
\(393\) −8.28121e6 −2.70466
\(394\) 309201. 0.100346
\(395\) 0 0
\(396\) −4.07322e6 −1.30527
\(397\) 931473. 0.296616 0.148308 0.988941i \(-0.452617\pi\)
0.148308 + 0.988941i \(0.452617\pi\)
\(398\) −1.86766e6 −0.591004
\(399\) −3.32164e6 −1.04453
\(400\) 0 0
\(401\) −502048. −0.155914 −0.0779568 0.996957i \(-0.524840\pi\)
−0.0779568 + 0.996957i \(0.524840\pi\)
\(402\) 1.09831e6 0.338970
\(403\) −6.83356e6 −2.09597
\(404\) −403656. −0.123043
\(405\) 0 0
\(406\) −108614. −0.0327019
\(407\) 5.50347e6 1.64684
\(408\) −3.27240e6 −0.973232
\(409\) 2.46221e6 0.727807 0.363903 0.931437i \(-0.381444\pi\)
0.363903 + 0.931437i \(0.381444\pi\)
\(410\) 0 0
\(411\) −666411. −0.194598
\(412\) −1.58667e6 −0.460514
\(413\) −1.98842e6 −0.573632
\(414\) −357863. −0.102616
\(415\) 0 0
\(416\) −904720. −0.256319
\(417\) 1.04557e7 2.94450
\(418\) −4.70209e6 −1.31628
\(419\) −1.72560e6 −0.480182 −0.240091 0.970750i \(-0.577177\pi\)
−0.240091 + 0.970750i \(0.577177\pi\)
\(420\) 0 0
\(421\) −4.78043e6 −1.31450 −0.657251 0.753671i \(-0.728281\pi\)
−0.657251 + 0.753671i \(0.728281\pi\)
\(422\) 4.39389e6 1.20107
\(423\) −5.12981e6 −1.39396
\(424\) −565064. −0.152645
\(425\) 0 0
\(426\) 5.70527e6 1.52318
\(427\) −82099.4 −0.0217907
\(428\) −2.03988e6 −0.538264
\(429\) −1.18206e7 −3.10097
\(430\) 0 0
\(431\) −3.18383e6 −0.825574 −0.412787 0.910828i \(-0.635445\pi\)
−0.412787 + 0.910828i \(0.635445\pi\)
\(432\) −2.03032e6 −0.523425
\(433\) 6.03313e6 1.54640 0.773202 0.634159i \(-0.218654\pi\)
0.773202 + 0.634159i \(0.218654\pi\)
\(434\) 1.51597e6 0.386336
\(435\) 0 0
\(436\) 2.35872e6 0.594238
\(437\) −413114. −0.103482
\(438\) 2.96855e6 0.739366
\(439\) −5.13976e6 −1.27286 −0.636431 0.771334i \(-0.719590\pi\)
−0.636431 + 0.771334i \(0.719590\pi\)
\(440\) 0 0
\(441\) 1.26900e6 0.310716
\(442\) −6.50557e6 −1.58391
\(443\) −1.03796e6 −0.251287 −0.125644 0.992075i \(-0.540100\pi\)
−0.125644 + 0.992075i \(0.540100\pi\)
\(444\) 5.07788e6 1.22243
\(445\) 0 0
\(446\) 5.35345e6 1.27437
\(447\) 242149. 0.0573210
\(448\) 200704. 0.0472456
\(449\) −7.38979e6 −1.72988 −0.864940 0.501875i \(-0.832644\pi\)
−0.864940 + 0.501875i \(0.832644\pi\)
\(450\) 0 0
\(451\) −5.24712e6 −1.21473
\(452\) 1.41055e6 0.324745
\(453\) 1.24314e7 2.84625
\(454\) 4.26806e6 0.971832
\(455\) 0 0
\(456\) −4.33846e6 −0.977066
\(457\) −2.17988e6 −0.488250 −0.244125 0.969744i \(-0.578501\pi\)
−0.244125 + 0.969744i \(0.578501\pi\)
\(458\) 1.58069e6 0.352113
\(459\) −1.45994e7 −3.23447
\(460\) 0 0
\(461\) −7.41009e6 −1.62394 −0.811972 0.583696i \(-0.801606\pi\)
−0.811972 + 0.583696i \(0.801606\pi\)
\(462\) 2.62230e6 0.571580
\(463\) 1.73426e6 0.375978 0.187989 0.982171i \(-0.439803\pi\)
0.187989 + 0.982171i \(0.439803\pi\)
\(464\) −141864. −0.0305898
\(465\) 0 0
\(466\) −5.61583e6 −1.19798
\(467\) −1.41704e6 −0.300670 −0.150335 0.988635i \(-0.548035\pi\)
−0.150335 + 0.988635i \(0.548035\pi\)
\(468\) −7.47140e6 −1.57684
\(469\) −484380. −0.101684
\(470\) 0 0
\(471\) 1.77440e6 0.368553
\(472\) −2.59712e6 −0.536583
\(473\) 7.38666e6 1.51808
\(474\) 7.80372e6 1.59535
\(475\) 0 0
\(476\) 1.44320e6 0.291951
\(477\) −4.66644e6 −0.939051
\(478\) −2.46869e6 −0.494194
\(479\) −3.71353e6 −0.739517 −0.369758 0.929128i \(-0.620560\pi\)
−0.369758 + 0.929128i \(0.620560\pi\)
\(480\) 0 0
\(481\) 1.00949e7 1.98947
\(482\) −4.64817e6 −0.911306
\(483\) 230389. 0.0449359
\(484\) 1.13529e6 0.220290
\(485\) 0 0
\(486\) −2.49733e6 −0.479607
\(487\) −6.53152e6 −1.24794 −0.623968 0.781450i \(-0.714480\pi\)
−0.623968 + 0.781450i \(0.714480\pi\)
\(488\) −107232. −0.0203833
\(489\) −7.50541e6 −1.41939
\(490\) 0 0
\(491\) 1.03633e7 1.93997 0.969986 0.243159i \(-0.0781836\pi\)
0.969986 + 0.243159i \(0.0781836\pi\)
\(492\) −4.84135e6 −0.901683
\(493\) −1.02010e6 −0.189028
\(494\) −8.62491e6 −1.59015
\(495\) 0 0
\(496\) 1.98004e6 0.361384
\(497\) −2.51615e6 −0.456926
\(498\) 6.51328e6 1.17686
\(499\) −1.34074e6 −0.241043 −0.120521 0.992711i \(-0.538457\pi\)
−0.120521 + 0.992711i \(0.538457\pi\)
\(500\) 0 0
\(501\) 1.59928e7 2.84663
\(502\) −5.58734e6 −0.989568
\(503\) −1.07226e6 −0.188964 −0.0944820 0.995527i \(-0.530119\pi\)
−0.0944820 + 0.995527i \(0.530119\pi\)
\(504\) 1.65746e6 0.290648
\(505\) 0 0
\(506\) 326137. 0.0566270
\(507\) −1.13690e7 −1.96428
\(508\) −1.42677e6 −0.245298
\(509\) 7.26315e6 1.24260 0.621299 0.783574i \(-0.286605\pi\)
0.621299 + 0.783574i \(0.286605\pi\)
\(510\) 0 0
\(511\) −1.30920e6 −0.221796
\(512\) 262144. 0.0441942
\(513\) −1.93555e7 −3.24721
\(514\) 2.26591e6 0.378298
\(515\) 0 0
\(516\) 6.81543e6 1.12686
\(517\) 4.67502e6 0.769232
\(518\) −2.23946e6 −0.366706
\(519\) 1.13580e7 1.85090
\(520\) 0 0
\(521\) −3.31930e6 −0.535738 −0.267869 0.963455i \(-0.586320\pi\)
−0.267869 + 0.963455i \(0.586320\pi\)
\(522\) −1.17155e6 −0.188184
\(523\) 4.01229e6 0.641414 0.320707 0.947178i \(-0.396080\pi\)
0.320707 + 0.947178i \(0.396080\pi\)
\(524\) 4.77021e6 0.758944
\(525\) 0 0
\(526\) −2.68257e6 −0.422754
\(527\) 1.42379e7 2.23315
\(528\) 3.42504e6 0.534664
\(529\) −6.40769e6 −0.995548
\(530\) 0 0
\(531\) −2.14477e7 −3.30099
\(532\) 1.91336e6 0.293101
\(533\) −9.62465e6 −1.46746
\(534\) −3.15215e6 −0.478358
\(535\) 0 0
\(536\) −632660. −0.0951171
\(537\) −1.94779e7 −2.91479
\(538\) 77155.1 0.0114923
\(539\) −1.15649e6 −0.171463
\(540\) 0 0
\(541\) −1.20893e7 −1.77586 −0.887929 0.459981i \(-0.847856\pi\)
−0.887929 + 0.459981i \(0.847856\pi\)
\(542\) −7.69369e6 −1.12496
\(543\) 1.81624e7 2.64346
\(544\) 1.88500e6 0.273095
\(545\) 0 0
\(546\) 4.81001e6 0.690501
\(547\) 4.43431e6 0.633663 0.316831 0.948482i \(-0.397381\pi\)
0.316831 + 0.948482i \(0.397381\pi\)
\(548\) 383872. 0.0546053
\(549\) −885548. −0.125395
\(550\) 0 0
\(551\) −1.35242e6 −0.189772
\(552\) 300916. 0.0420337
\(553\) −3.44161e6 −0.478574
\(554\) −4.29297e6 −0.594269
\(555\) 0 0
\(556\) −6.02276e6 −0.826245
\(557\) 390925. 0.0533895 0.0266947 0.999644i \(-0.491502\pi\)
0.0266947 + 0.999644i \(0.491502\pi\)
\(558\) 1.63516e7 2.22318
\(559\) 1.35491e7 1.83393
\(560\) 0 0
\(561\) 2.46285e7 3.30392
\(562\) 4.21775e6 0.563300
\(563\) 2.64029e6 0.351059 0.175530 0.984474i \(-0.443836\pi\)
0.175530 + 0.984474i \(0.443836\pi\)
\(564\) 4.31350e6 0.570994
\(565\) 0 0
\(566\) −9.16065e6 −1.20195
\(567\) 4.50116e6 0.587985
\(568\) −3.28640e6 −0.427415
\(569\) −228685. −0.0296112 −0.0148056 0.999890i \(-0.504713\pi\)
−0.0148056 + 0.999890i \(0.504713\pi\)
\(570\) 0 0
\(571\) 5.96584e6 0.765740 0.382870 0.923802i \(-0.374936\pi\)
0.382870 + 0.923802i \(0.374936\pi\)
\(572\) 6.80902e6 0.870150
\(573\) 5.71296e6 0.726900
\(574\) 2.13514e6 0.270488
\(575\) 0 0
\(576\) 2.16485e6 0.271876
\(577\) 7.86646e6 0.983648 0.491824 0.870695i \(-0.336330\pi\)
0.491824 + 0.870695i \(0.336330\pi\)
\(578\) 7.87504e6 0.980467
\(579\) 4.55530e6 0.564703
\(580\) 0 0
\(581\) −2.87250e6 −0.353037
\(582\) −1.30602e7 −1.59824
\(583\) 4.25273e6 0.518199
\(584\) −1.70997e6 −0.207471
\(585\) 0 0
\(586\) 9.66163e6 1.16227
\(587\) −1.19474e7 −1.43113 −0.715565 0.698546i \(-0.753831\pi\)
−0.715565 + 0.698546i \(0.753831\pi\)
\(588\) −1.06706e6 −0.127275
\(589\) 1.88762e7 2.24195
\(590\) 0 0
\(591\) −2.14712e6 −0.252864
\(592\) −2.92500e6 −0.343022
\(593\) −7.64277e6 −0.892512 −0.446256 0.894905i \(-0.647243\pi\)
−0.446256 + 0.894905i \(0.647243\pi\)
\(594\) 1.52804e7 1.77692
\(595\) 0 0
\(596\) −139485. −0.0160846
\(597\) 1.29692e7 1.48929
\(598\) 598223. 0.0684085
\(599\) 615573. 0.0700991 0.0350496 0.999386i \(-0.488841\pi\)
0.0350496 + 0.999386i \(0.488841\pi\)
\(600\) 0 0
\(601\) −6.68100e6 −0.754493 −0.377247 0.926113i \(-0.623129\pi\)
−0.377247 + 0.926113i \(0.623129\pi\)
\(602\) −3.00576e6 −0.338036
\(603\) −5.22466e6 −0.585147
\(604\) −7.16082e6 −0.798676
\(605\) 0 0
\(606\) 2.80303e6 0.310060
\(607\) 810442. 0.0892792 0.0446396 0.999003i \(-0.485786\pi\)
0.0446396 + 0.999003i \(0.485786\pi\)
\(608\) 2.49908e6 0.274171
\(609\) 754230. 0.0824063
\(610\) 0 0
\(611\) 8.57527e6 0.929276
\(612\) 1.55668e7 1.68004
\(613\) 4.96233e6 0.533377 0.266688 0.963783i \(-0.414071\pi\)
0.266688 + 0.963783i \(0.414071\pi\)
\(614\) 3.24030e6 0.346868
\(615\) 0 0
\(616\) −1.51052e6 −0.160389
\(617\) −2.35809e6 −0.249371 −0.124686 0.992196i \(-0.539792\pi\)
−0.124686 + 0.992196i \(0.539792\pi\)
\(618\) 1.10180e7 1.16046
\(619\) 7.68885e6 0.806556 0.403278 0.915077i \(-0.367871\pi\)
0.403278 + 0.915077i \(0.367871\pi\)
\(620\) 0 0
\(621\) 1.34250e6 0.139696
\(622\) 8.02162e6 0.831354
\(623\) 1.39017e6 0.143498
\(624\) 6.28246e6 0.645905
\(625\) 0 0
\(626\) 2.62911e6 0.268147
\(627\) 3.26517e7 3.31694
\(628\) −1.02211e6 −0.103418
\(629\) −2.10328e7 −2.11968
\(630\) 0 0
\(631\) −1.65595e7 −1.65567 −0.827835 0.560971i \(-0.810428\pi\)
−0.827835 + 0.560971i \(0.810428\pi\)
\(632\) −4.49517e6 −0.447665
\(633\) −3.05116e7 −3.02661
\(634\) −1.25186e6 −0.123689
\(635\) 0 0
\(636\) 3.92386e6 0.384654
\(637\) −2.12132e6 −0.207137
\(638\) 1.06768e6 0.103846
\(639\) −2.71399e7 −2.62940
\(640\) 0 0
\(641\) 3.81994e6 0.367207 0.183604 0.983000i \(-0.441224\pi\)
0.183604 + 0.983000i \(0.441224\pi\)
\(642\) 1.41651e7 1.35639
\(643\) −1.54152e7 −1.47035 −0.735176 0.677877i \(-0.762900\pi\)
−0.735176 + 0.677877i \(0.762900\pi\)
\(644\) −132711. −0.0126093
\(645\) 0 0
\(646\) 1.79701e7 1.69422
\(647\) 1.24057e7 1.16509 0.582546 0.812798i \(-0.302057\pi\)
0.582546 + 0.812798i \(0.302057\pi\)
\(648\) 5.87906e6 0.550010
\(649\) 1.95462e7 1.82159
\(650\) 0 0
\(651\) −1.05270e7 −0.973537
\(652\) 4.32333e6 0.398290
\(653\) −9.76650e6 −0.896306 −0.448153 0.893957i \(-0.647918\pi\)
−0.448153 + 0.893957i \(0.647918\pi\)
\(654\) −1.63792e7 −1.49744
\(655\) 0 0
\(656\) 2.78876e6 0.253018
\(657\) −1.41214e7 −1.27633
\(658\) −1.90235e6 −0.171287
\(659\) 1.51635e7 1.36014 0.680072 0.733146i \(-0.261949\pi\)
0.680072 + 0.733146i \(0.261949\pi\)
\(660\) 0 0
\(661\) 1.84762e6 0.164479 0.0822394 0.996613i \(-0.473793\pi\)
0.0822394 + 0.996613i \(0.473793\pi\)
\(662\) −1.01125e6 −0.0896840
\(663\) 4.51753e7 3.99133
\(664\) −3.75184e6 −0.330236
\(665\) 0 0
\(666\) −2.41554e7 −2.11022
\(667\) 93803.9 0.00816406
\(668\) −9.21232e6 −0.798781
\(669\) −3.71749e7 −3.21133
\(670\) 0 0
\(671\) 807039. 0.0691971
\(672\) −1.39371e6 −0.119055
\(673\) −1.70205e7 −1.44855 −0.724275 0.689511i \(-0.757825\pi\)
−0.724275 + 0.689511i \(0.757825\pi\)
\(674\) 2.99583e6 0.254020
\(675\) 0 0
\(676\) 6.54890e6 0.551190
\(677\) 5.61056e6 0.470472 0.235236 0.971938i \(-0.424414\pi\)
0.235236 + 0.971938i \(0.424414\pi\)
\(678\) −9.79499e6 −0.818332
\(679\) 5.75985e6 0.479442
\(680\) 0 0
\(681\) −2.96378e7 −2.44894
\(682\) −1.49020e7 −1.22683
\(683\) −1.73009e7 −1.41911 −0.709556 0.704649i \(-0.751105\pi\)
−0.709556 + 0.704649i \(0.751105\pi\)
\(684\) 2.06380e7 1.68666
\(685\) 0 0
\(686\) 470596. 0.0381802
\(687\) −1.09765e7 −0.887299
\(688\) −3.92589e6 −0.316203
\(689\) 7.80066e6 0.626013
\(690\) 0 0
\(691\) −9.30689e6 −0.741497 −0.370748 0.928733i \(-0.620899\pi\)
−0.370748 + 0.928733i \(0.620899\pi\)
\(692\) −6.54251e6 −0.519373
\(693\) −1.24742e7 −0.986691
\(694\) 3.09035e6 0.243562
\(695\) 0 0
\(696\) 985116. 0.0770840
\(697\) 2.00531e7 1.56351
\(698\) 8.01233e6 0.622473
\(699\) 3.89969e7 3.01882
\(700\) 0 0
\(701\) 1.44180e7 1.10818 0.554090 0.832457i \(-0.313066\pi\)
0.554090 + 0.832457i \(0.313066\pi\)
\(702\) 2.80284e7 2.14662
\(703\) −2.78847e7 −2.12803
\(704\) −1.97292e6 −0.150030
\(705\) 0 0
\(706\) 4.42657e6 0.334238
\(707\) −1.23620e6 −0.0930120
\(708\) 1.80347e7 1.35215
\(709\) −1.00341e7 −0.749656 −0.374828 0.927094i \(-0.622298\pi\)
−0.374828 + 0.927094i \(0.622298\pi\)
\(710\) 0 0
\(711\) −3.71222e7 −2.75397
\(712\) 1.81573e6 0.134230
\(713\) −1.30925e6 −0.0964492
\(714\) −1.00217e7 −0.735695
\(715\) 0 0
\(716\) 1.12198e7 0.817907
\(717\) 1.71428e7 1.24533
\(718\) −1.68923e7 −1.22286
\(719\) −1.43364e7 −1.03423 −0.517114 0.855916i \(-0.672994\pi\)
−0.517114 + 0.855916i \(0.672994\pi\)
\(720\) 0 0
\(721\) −4.85917e6 −0.348116
\(722\) 1.39199e7 0.993789
\(723\) 3.22773e7 2.29642
\(724\) −1.04621e7 −0.741773
\(725\) 0 0
\(726\) −7.88358e6 −0.555114
\(727\) −577386. −0.0405164 −0.0202582 0.999795i \(-0.506449\pi\)
−0.0202582 + 0.999795i \(0.506449\pi\)
\(728\) −2.77070e6 −0.193759
\(729\) −4.98035e6 −0.347089
\(730\) 0 0
\(731\) −2.82299e7 −1.95396
\(732\) 744629. 0.0513644
\(733\) −2.12449e7 −1.46048 −0.730240 0.683191i \(-0.760592\pi\)
−0.730240 + 0.683191i \(0.760592\pi\)
\(734\) −2.88530e6 −0.197675
\(735\) 0 0
\(736\) −173336. −0.0117949
\(737\) 4.76147e6 0.322903
\(738\) 2.30303e7 1.55653
\(739\) 1.09365e7 0.736662 0.368331 0.929695i \(-0.379929\pi\)
0.368331 + 0.929695i \(0.379929\pi\)
\(740\) 0 0
\(741\) 5.98922e7 4.00705
\(742\) −1.73051e6 −0.115389
\(743\) 2.42027e7 1.60839 0.804195 0.594366i \(-0.202597\pi\)
0.804195 + 0.594366i \(0.202597\pi\)
\(744\) −1.37496e7 −0.910661
\(745\) 0 0
\(746\) 1.16681e7 0.767631
\(747\) −3.09836e7 −2.03156
\(748\) −1.41867e7 −0.927102
\(749\) −6.24714e6 −0.406890
\(750\) 0 0
\(751\) −1.22083e7 −0.789871 −0.394936 0.918709i \(-0.629233\pi\)
−0.394936 + 0.918709i \(0.629233\pi\)
\(752\) −2.48470e6 −0.160225
\(753\) 3.87990e7 2.49364
\(754\) 1.95842e6 0.125452
\(755\) 0 0
\(756\) −6.21785e6 −0.395672
\(757\) 6.73453e6 0.427138 0.213569 0.976928i \(-0.431491\pi\)
0.213569 + 0.976928i \(0.431491\pi\)
\(758\) −303640. −0.0191949
\(759\) −2.26472e6 −0.142696
\(760\) 0 0
\(761\) 1.28864e7 0.806625 0.403312 0.915062i \(-0.367859\pi\)
0.403312 + 0.915062i \(0.367859\pi\)
\(762\) 9.90760e6 0.618132
\(763\) 7.22358e6 0.449202
\(764\) −3.29083e6 −0.203973
\(765\) 0 0
\(766\) 5.94791e6 0.366263
\(767\) 3.58531e7 2.20058
\(768\) −1.82035e6 −0.111366
\(769\) 1.11806e7 0.681787 0.340893 0.940102i \(-0.389270\pi\)
0.340893 + 0.940102i \(0.389270\pi\)
\(770\) 0 0
\(771\) −1.57347e7 −0.953283
\(772\) −2.62398e6 −0.158459
\(773\) −2.70973e6 −0.163109 −0.0815543 0.996669i \(-0.525988\pi\)
−0.0815543 + 0.996669i \(0.525988\pi\)
\(774\) −3.24209e7 −1.94524
\(775\) 0 0
\(776\) 7.52306e6 0.448477
\(777\) 1.55510e7 0.924072
\(778\) 9.55247e6 0.565805
\(779\) 2.65859e7 1.56967
\(780\) 0 0
\(781\) 2.47338e7 1.45099
\(782\) −1.24641e6 −0.0728859
\(783\) 4.39497e6 0.256184
\(784\) 614656. 0.0357143
\(785\) 0 0
\(786\) −3.31248e7 −1.91248
\(787\) 7.17969e6 0.413208 0.206604 0.978425i \(-0.433759\pi\)
0.206604 + 0.978425i \(0.433759\pi\)
\(788\) 1.23680e6 0.0709553
\(789\) 1.86281e7 1.06531
\(790\) 0 0
\(791\) 4.31981e6 0.245484
\(792\) −1.62929e7 −0.922965
\(793\) 1.48033e6 0.0835940
\(794\) 3.72589e6 0.209739
\(795\) 0 0
\(796\) −7.47064e6 −0.417903
\(797\) 2.09215e7 1.16667 0.583335 0.812232i \(-0.301748\pi\)
0.583335 + 0.812232i \(0.301748\pi\)
\(798\) −1.32865e7 −0.738593
\(799\) −1.78667e7 −0.990097
\(800\) 0 0
\(801\) 1.49947e7 0.825766
\(802\) −2.00819e6 −0.110248
\(803\) 1.28694e7 0.704321
\(804\) 4.39325e6 0.239688
\(805\) 0 0
\(806\) −2.73343e7 −1.48207
\(807\) −535772. −0.0289599
\(808\) −1.61462e6 −0.0870048
\(809\) −8.14429e6 −0.437504 −0.218752 0.975780i \(-0.570199\pi\)
−0.218752 + 0.975780i \(0.570199\pi\)
\(810\) 0 0
\(811\) −1.99391e7 −1.06452 −0.532260 0.846581i \(-0.678657\pi\)
−0.532260 + 0.846581i \(0.678657\pi\)
\(812\) −434458. −0.0231237
\(813\) 5.34257e7 2.83481
\(814\) 2.20139e7 1.16449
\(815\) 0 0
\(816\) −1.30896e7 −0.688179
\(817\) −3.74264e7 −1.96166
\(818\) 9.84882e6 0.514637
\(819\) −2.28812e7 −1.19198
\(820\) 0 0
\(821\) 3.57285e7 1.84994 0.924968 0.380046i \(-0.124092\pi\)
0.924968 + 0.380046i \(0.124092\pi\)
\(822\) −2.66564e6 −0.137601
\(823\) −1.29131e7 −0.664556 −0.332278 0.943182i \(-0.607817\pi\)
−0.332278 + 0.943182i \(0.607817\pi\)
\(824\) −6.34667e6 −0.325632
\(825\) 0 0
\(826\) −7.95368e6 −0.405619
\(827\) −365916. −0.0186045 −0.00930225 0.999957i \(-0.502961\pi\)
−0.00930225 + 0.999957i \(0.502961\pi\)
\(828\) −1.43145e6 −0.0725607
\(829\) 2.46028e7 1.24336 0.621682 0.783270i \(-0.286450\pi\)
0.621682 + 0.783270i \(0.286450\pi\)
\(830\) 0 0
\(831\) 2.98108e7 1.49751
\(832\) −3.61888e6 −0.181245
\(833\) 4.41981e6 0.220694
\(834\) 4.18227e7 2.08208
\(835\) 0 0
\(836\) −1.88083e7 −0.930754
\(837\) −6.13419e7 −3.02652
\(838\) −6.90241e6 −0.339540
\(839\) −1.60455e7 −0.786950 −0.393475 0.919335i \(-0.628727\pi\)
−0.393475 + 0.919335i \(0.628727\pi\)
\(840\) 0 0
\(841\) −2.02041e7 −0.985028
\(842\) −1.91217e7 −0.929494
\(843\) −2.92885e7 −1.41947
\(844\) 1.75756e7 0.849284
\(845\) 0 0
\(846\) −2.05192e7 −0.985679
\(847\) 3.47683e6 0.166523
\(848\) −2.26026e6 −0.107936
\(849\) 6.36124e7 3.02881
\(850\) 0 0
\(851\) 1.93409e6 0.0915486
\(852\) 2.28211e7 1.07705
\(853\) −9.50336e6 −0.447203 −0.223601 0.974681i \(-0.571781\pi\)
−0.223601 + 0.974681i \(0.571781\pi\)
\(854\) −328398. −0.0154083
\(855\) 0 0
\(856\) −8.15953e6 −0.380610
\(857\) 8.55821e6 0.398044 0.199022 0.979995i \(-0.436223\pi\)
0.199022 + 0.979995i \(0.436223\pi\)
\(858\) −4.72825e7 −2.19271
\(859\) 3.73000e7 1.72475 0.862376 0.506269i \(-0.168976\pi\)
0.862376 + 0.506269i \(0.168976\pi\)
\(860\) 0 0
\(861\) −1.48266e7 −0.681608
\(862\) −1.27353e7 −0.583769
\(863\) 1.41708e7 0.647690 0.323845 0.946110i \(-0.395024\pi\)
0.323845 + 0.946110i \(0.395024\pi\)
\(864\) −8.12127e6 −0.370118
\(865\) 0 0
\(866\) 2.41325e7 1.09347
\(867\) −5.46850e7 −2.47070
\(868\) 6.06386e6 0.273181
\(869\) 3.38311e7 1.51973
\(870\) 0 0
\(871\) 8.73382e6 0.390085
\(872\) 9.43488e6 0.420190
\(873\) 6.21273e7 2.75897
\(874\) −1.65245e6 −0.0731730
\(875\) 0 0
\(876\) 1.18742e7 0.522811
\(877\) −2.66505e7 −1.17006 −0.585028 0.811013i \(-0.698917\pi\)
−0.585028 + 0.811013i \(0.698917\pi\)
\(878\) −2.05590e7 −0.900049
\(879\) −6.70913e7 −2.92883
\(880\) 0 0
\(881\) 2.56753e7 1.11449 0.557245 0.830348i \(-0.311859\pi\)
0.557245 + 0.830348i \(0.311859\pi\)
\(882\) 5.07598e6 0.219709
\(883\) 9.63276e6 0.415766 0.207883 0.978154i \(-0.433343\pi\)
0.207883 + 0.978154i \(0.433343\pi\)
\(884\) −2.60223e7 −1.11999
\(885\) 0 0
\(886\) −4.15183e6 −0.177687
\(887\) 6.02461e6 0.257110 0.128555 0.991702i \(-0.458966\pi\)
0.128555 + 0.991702i \(0.458966\pi\)
\(888\) 2.03115e7 0.864390
\(889\) −4.36947e6 −0.185428
\(890\) 0 0
\(891\) −4.42465e7 −1.86717
\(892\) 2.14138e7 0.901119
\(893\) −2.36872e7 −0.993997
\(894\) 968596. 0.0405321
\(895\) 0 0
\(896\) 802816. 0.0334077
\(897\) −4.15412e6 −0.172384
\(898\) −2.95592e7 −1.22321
\(899\) −4.28613e6 −0.176875
\(900\) 0 0
\(901\) −1.62528e7 −0.666986
\(902\) −2.09885e7 −0.858944
\(903\) 2.08723e7 0.851825
\(904\) 5.64219e6 0.229629
\(905\) 0 0
\(906\) 4.97254e7 2.01260
\(907\) −1.62666e7 −0.656566 −0.328283 0.944579i \(-0.606470\pi\)
−0.328283 + 0.944579i \(0.606470\pi\)
\(908\) 1.70723e7 0.687189
\(909\) −1.33340e7 −0.535241
\(910\) 0 0
\(911\) 2.90438e7 1.15946 0.579732 0.814807i \(-0.303157\pi\)
0.579732 + 0.814807i \(0.303157\pi\)
\(912\) −1.73539e7 −0.690890
\(913\) 2.82367e7 1.12108
\(914\) −8.71952e6 −0.345245
\(915\) 0 0
\(916\) 6.32275e6 0.248982
\(917\) 1.46088e7 0.573708
\(918\) −5.83976e7 −2.28712
\(919\) −4.01091e7 −1.56659 −0.783293 0.621652i \(-0.786462\pi\)
−0.783293 + 0.621652i \(0.786462\pi\)
\(920\) 0 0
\(921\) −2.25009e7 −0.874081
\(922\) −2.96404e7 −1.14830
\(923\) 4.53685e7 1.75287
\(924\) 1.04892e7 0.404168
\(925\) 0 0
\(926\) 6.93705e6 0.265857
\(927\) −5.24123e7 −2.00325
\(928\) −567455. −0.0216303
\(929\) 1.54551e7 0.587533 0.293766 0.955877i \(-0.405091\pi\)
0.293766 + 0.955877i \(0.405091\pi\)
\(930\) 0 0
\(931\) 5.85966e6 0.221564
\(932\) −2.24633e7 −0.847099
\(933\) −5.57029e7 −2.09495
\(934\) −5.66816e6 −0.212606
\(935\) 0 0
\(936\) −2.98856e7 −1.11499
\(937\) −4.63024e7 −1.72288 −0.861439 0.507861i \(-0.830436\pi\)
−0.861439 + 0.507861i \(0.830436\pi\)
\(938\) −1.93752e6 −0.0719017
\(939\) −1.82568e7 −0.675710
\(940\) 0 0
\(941\) 1.24284e7 0.457553 0.228777 0.973479i \(-0.426527\pi\)
0.228777 + 0.973479i \(0.426527\pi\)
\(942\) 7.09760e6 0.260606
\(943\) −1.84400e6 −0.0675275
\(944\) −1.03885e7 −0.379422
\(945\) 0 0
\(946\) 2.95466e7 1.07345
\(947\) 3.59653e7 1.30319 0.651597 0.758565i \(-0.274099\pi\)
0.651597 + 0.758565i \(0.274099\pi\)
\(948\) 3.12149e7 1.12808
\(949\) 2.36060e7 0.850859
\(950\) 0 0
\(951\) 8.69303e6 0.311688
\(952\) 5.77281e6 0.206440
\(953\) −1.07512e7 −0.383465 −0.191733 0.981447i \(-0.561411\pi\)
−0.191733 + 0.981447i \(0.561411\pi\)
\(954\) −1.86657e7 −0.664010
\(955\) 0 0
\(956\) −9.87477e6 −0.349448
\(957\) −7.41409e6 −0.261684
\(958\) −1.48541e7 −0.522917
\(959\) 1.17561e6 0.0412777
\(960\) 0 0
\(961\) 3.11936e7 1.08958
\(962\) 4.03794e7 1.40677
\(963\) −6.73834e7 −2.34146
\(964\) −1.85927e7 −0.644390
\(965\) 0 0
\(966\) 921555. 0.0317745
\(967\) 1.57963e7 0.543235 0.271618 0.962405i \(-0.412441\pi\)
0.271618 + 0.962405i \(0.412441\pi\)
\(968\) 4.54117e6 0.155768
\(969\) −1.24786e8 −4.26931
\(970\) 0 0
\(971\) 2.98682e7 1.01662 0.508312 0.861173i \(-0.330270\pi\)
0.508312 + 0.861173i \(0.330270\pi\)
\(972\) −9.98933e6 −0.339133
\(973\) −1.84447e7 −0.624582
\(974\) −2.61261e7 −0.882424
\(975\) 0 0
\(976\) −428928. −0.0144132
\(977\) −8.43017e6 −0.282553 −0.141276 0.989970i \(-0.545121\pi\)
−0.141276 + 0.989970i \(0.545121\pi\)
\(978\) −3.00216e7 −1.00366
\(979\) −1.36654e7 −0.455684
\(980\) 0 0
\(981\) 7.79156e7 2.58495
\(982\) 4.14533e7 1.37177
\(983\) 4.42301e7 1.45994 0.729969 0.683480i \(-0.239535\pi\)
0.729969 + 0.683480i \(0.239535\pi\)
\(984\) −1.93654e7 −0.637586
\(985\) 0 0
\(986\) −4.08040e6 −0.133663
\(987\) 1.32101e7 0.431631
\(988\) −3.44996e7 −1.12440
\(989\) 2.59589e6 0.0843910
\(990\) 0 0
\(991\) −7.69521e6 −0.248907 −0.124453 0.992225i \(-0.539718\pi\)
−0.124453 + 0.992225i \(0.539718\pi\)
\(992\) 7.92015e6 0.255537
\(993\) 7.02224e6 0.225997
\(994\) −1.00646e7 −0.323095
\(995\) 0 0
\(996\) 2.60531e7 0.832169
\(997\) −4.71077e6 −0.150091 −0.0750453 0.997180i \(-0.523910\pi\)
−0.0750453 + 0.997180i \(0.523910\pi\)
\(998\) −5.36297e6 −0.170443
\(999\) 9.06172e7 2.87274
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.6.a.s.1.1 yes 2
5.2 odd 4 350.6.c.i.99.4 4
5.3 odd 4 350.6.c.i.99.1 4
5.4 even 2 350.6.a.r.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
350.6.a.r.1.2 2 5.4 even 2
350.6.a.s.1.1 yes 2 1.1 even 1 trivial
350.6.c.i.99.1 4 5.3 odd 4
350.6.c.i.99.4 4 5.2 odd 4