Properties

Label 350.8.a
Level 350350
Weight 88
Character orbit 350.a
Rep. character χ350(1,)\chi_{350}(1,\cdot)
Character field Q\Q
Dimension 6666
Newform subspaces 2727
Sturm bound 480480
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 350=2527 350 = 2 \cdot 5^{2} \cdot 7
Weight: k k == 8 8
Character orbit: [χ][\chi] == 350.a (trivial)
Character field: Q\Q
Newform subspaces: 27 27
Sturm bound: 480480
Trace bound: 33
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M8(Γ0(350))M_{8}(\Gamma_0(350)).

Total New Old
Modular forms 432 66 366
Cusp forms 408 66 342
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

225577FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++++57578849495454884646330033
++++--51517744444848774141330033
++-++-52528844444949884141330033
++--++565610104646535310104343330033
-++++-54548846465151884343330033
-++-++54549945455151994242330033
--++++53539944445050994141330033
----55557748485252774545330033
Plus space++220220363618418420820836361721721212001212
Minus space-212212303018218220020030301701701212001212

Trace form

66q+26q3+4224q4+688q6+40074q9+5520q11+1664q1215410q135488q14+270336q16+42064q1710528q18+3558q1974774q2152128q22++26161484q99+O(q100) 66 q + 26 q^{3} + 4224 q^{4} + 688 q^{6} + 40074 q^{9} + 5520 q^{11} + 1664 q^{12} - 15410 q^{13} - 5488 q^{14} + 270336 q^{16} + 42064 q^{17} - 10528 q^{18} + 3558 q^{19} - 74774 q^{21} - 52128 q^{22}+ \cdots + 26161484 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S8new(Γ0(350))S_{8}^{\mathrm{new}}(\Gamma_0(350)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 5 7
350.8.a.a 350.a 1.a 11 109.335109.335 Q\Q None 70.8.a.b 8-8 9-9 00 343343 ++ ++ - SU(2)\mathrm{SU}(2) q8q29q3+26q4+72q6+73q7+q-8q^{2}-9q^{3}+2^{6}q^{4}+72q^{6}+7^{3}q^{7}+\cdots
350.8.a.b 350.a 1.a 11 109.335109.335 Q\Q None 70.8.c.b 8-8 33 00 343-343 ++ - ++ SU(2)\mathrm{SU}(2) q8q2+3q3+26q424q673q7+q-8q^{2}+3q^{3}+2^{6}q^{4}-24q^{6}-7^{3}q^{7}+\cdots
350.8.a.c 350.a 1.a 11 109.335109.335 Q\Q None 70.8.c.a 8-8 6363 00 343-343 ++ - ++ SU(2)\mathrm{SU}(2) q8q2+63q3+26q4504q6+q-8q^{2}+63q^{3}+2^{6}q^{4}-504q^{6}+\cdots
350.8.a.d 350.a 1.a 11 109.335109.335 Q\Q None 14.8.a.b 8-8 6666 00 343343 ++ ++ - SU(2)\mathrm{SU}(2) q8q2+66q3+26q4528q6+q-8q^{2}+66q^{3}+2^{6}q^{4}-528q^{6}+\cdots
350.8.a.e 350.a 1.a 11 109.335109.335 Q\Q None 70.8.a.a 8-8 9393 00 343-343 ++ ++ ++ SU(2)\mathrm{SU}(2) q8q2+93q3+26q4744q6+q-8q^{2}+93q^{3}+2^{6}q^{4}-744q^{6}+\cdots
350.8.a.f 350.a 1.a 11 109.335109.335 Q\Q None 70.8.c.a 88 63-63 00 343343 - - - SU(2)\mathrm{SU}(2) q+8q263q3+26q4504q6+q+8q^{2}-63q^{3}+2^{6}q^{4}-504q^{6}+\cdots
350.8.a.g 350.a 1.a 11 109.335109.335 Q\Q None 70.8.c.b 88 3-3 00 343343 - - - SU(2)\mathrm{SU}(2) q+8q23q3+26q424q6+73q7+q+8q^{2}-3q^{3}+2^{6}q^{4}-24q^{6}+7^{3}q^{7}+\cdots
350.8.a.h 350.a 1.a 11 109.335109.335 Q\Q None 14.8.a.a 88 8282 00 343343 - ++ - SU(2)\mathrm{SU}(2) q+8q2+82q3+26q4+656q6+q+8q^{2}+82q^{3}+2^{6}q^{4}+656q^{6}+\cdots
350.8.a.i 350.a 1.a 22 109.335109.335 Q(214)\Q(\sqrt{214}) None 70.8.c.c 16-16 80-80 00 686-686 ++ - ++ SU(2)\mathrm{SU}(2) q8q2+(40+β)q3+26q4+(320+)q6+q-8q^{2}+(-40+\beta )q^{3}+2^{6}q^{4}+(320+\cdots)q^{6}+\cdots
350.8.a.j 350.a 1.a 22 109.335109.335 Q(1969)\Q(\sqrt{1969}) None 14.8.a.c 16-16 70-70 00 686-686 ++ ++ ++ SU(2)\mathrm{SU}(2) q8q2+(35β)q3+26q4+(280+)q6+q-8q^{2}+(-35-\beta )q^{3}+2^{6}q^{4}+(280+\cdots)q^{6}+\cdots
350.8.a.k 350.a 1.a 22 109.335109.335 Q(12121)\Q(\sqrt{12121}) None 70.8.a.h 16-16 29-29 00 686686 ++ ++ - SU(2)\mathrm{SU}(2) q8q2+(14β)q3+26q4+(112+)q6+q-8q^{2}+(-14-\beta )q^{3}+2^{6}q^{4}+(112+\cdots)q^{6}+\cdots
350.8.a.l 350.a 1.a 22 109.335109.335 Q(8761)\Q(\sqrt{8761}) None 70.8.a.g 16-16 55 00 686-686 ++ ++ ++ SU(2)\mathrm{SU}(2) q8q2+(3β)q3+26q4+(24+)q6+q-8q^{2}+(3-\beta )q^{3}+2^{6}q^{4}+(-24+\cdots)q^{6}+\cdots
350.8.a.m 350.a 1.a 22 109.335109.335 Q(1401)\Q(\sqrt{1401}) None 70.8.a.f 1616 45-45 00 686686 - ++ - SU(2)\mathrm{SU}(2) q+8q2+(22β)q3+26q4+(176+)q6+q+8q^{2}+(-22-\beta )q^{3}+2^{6}q^{4}+(-176+\cdots)q^{6}+\cdots
350.8.a.n 350.a 1.a 22 109.335109.335 Q(18481)\Q(\sqrt{18481}) None 70.8.a.e 1616 31-31 00 686-686 - ++ ++ SU(2)\mathrm{SU}(2) q+8q2+(15β)q3+26q4+(120+)q6+q+8q^{2}+(-15-\beta )q^{3}+2^{6}q^{4}+(-120+\cdots)q^{6}+\cdots
350.8.a.o 350.a 1.a 22 109.335109.335 Q(11761)\Q(\sqrt{11761}) None 70.8.a.d 1616 25-25 00 686686 - ++ - SU(2)\mathrm{SU}(2) q+8q2+(12β)q3+26q4+(96+)q6+q+8q^{2}+(-12-\beta )q^{3}+2^{6}q^{4}+(-96+\cdots)q^{6}+\cdots
350.8.a.p 350.a 1.a 22 109.335109.335 Q(9241)\Q(\sqrt{9241}) None 70.8.a.c 1616 11-11 00 686-686 - ++ ++ SU(2)\mathrm{SU}(2) q+8q2+(5β)q3+26q4+(40+)q6+q+8q^{2}+(-5-\beta )q^{3}+2^{6}q^{4}+(-40+\cdots)q^{6}+\cdots
350.8.a.q 350.a 1.a 22 109.335109.335 Q(214)\Q(\sqrt{214}) None 70.8.c.c 1616 8080 00 686686 - - - SU(2)\mathrm{SU}(2) q+8q2+(40+β)q3+26q4+(320+)q6+q+8q^{2}+(40+\beta )q^{3}+2^{6}q^{4}+(320+\cdots)q^{6}+\cdots
350.8.a.r 350.a 1.a 33 109.335109.335 Q[x]/(x3)\mathbb{Q}[x]/(x^{3} - \cdots) None 350.8.a.r 24-24 83-83 00 10291029 ++ ++ - SU(2)\mathrm{SU}(2) q8q2+(28+β1)q3+26q4+(224+)q6+q-8q^{2}+(-28+\beta _{1})q^{3}+2^{6}q^{4}+(224+\cdots)q^{6}+\cdots
350.8.a.s 350.a 1.a 33 109.335109.335 Q[x]/(x3)\mathbb{Q}[x]/(x^{3} - \cdots) None 350.8.a.s 24-24 5353 00 1029-1029 ++ ++ ++ SU(2)\mathrm{SU}(2) q8q2+(18+β1)q3+26q4+(122+)q6+q-8q^{2}+(18+\beta _{1})q^{3}+2^{6}q^{4}+(-12^{2}+\cdots)q^{6}+\cdots
350.8.a.t 350.a 1.a 33 109.335109.335 Q[x]/(x3)\mathbb{Q}[x]/(x^{3} - \cdots) None 350.8.a.s 2424 53-53 00 10291029 - - - SU(2)\mathrm{SU}(2) q+8q2+(18β1)q3+26q4+(122+)q6+q+8q^{2}+(-18-\beta _{1})q^{3}+2^{6}q^{4}+(-12^{2}+\cdots)q^{6}+\cdots
350.8.a.u 350.a 1.a 33 109.335109.335 Q[x]/(x3)\mathbb{Q}[x]/(x^{3} - \cdots) None 350.8.a.r 2424 8383 00 1029-1029 - - ++ SU(2)\mathrm{SU}(2) q+8q2+(28β1)q3+26q4+(224+)q6+q+8q^{2}+(28-\beta _{1})q^{3}+2^{6}q^{4}+(224+\cdots)q^{6}+\cdots
350.8.a.v 350.a 1.a 44 109.335109.335 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 350.8.a.v 32-32 42-42 00 13721372 ++ - - SU(2)\mathrm{SU}(2) q8q2+(10+β1)q3+26q4+(80+)q6+q-8q^{2}+(-10+\beta _{1})q^{3}+2^{6}q^{4}+(80+\cdots)q^{6}+\cdots
350.8.a.w 350.a 1.a 44 109.335109.335 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 350.8.a.w 32-32 14-14 00 1372-1372 ++ - ++ SU(2)\mathrm{SU}(2) q8q2+(4+β1)q3+26q4+(25+)q6+q-8q^{2}+(-4+\beta _{1})q^{3}+2^{6}q^{4}+(2^{5}+\cdots)q^{6}+\cdots
350.8.a.x 350.a 1.a 44 109.335109.335 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 350.8.a.w 3232 1414 00 13721372 - ++ - SU(2)\mathrm{SU}(2) q+8q2+(4β1)q3+26q4+(258β1+)q6+q+8q^{2}+(4-\beta _{1})q^{3}+2^{6}q^{4}+(2^{5}-8\beta _{1}+\cdots)q^{6}+\cdots
350.8.a.y 350.a 1.a 44 109.335109.335 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 350.8.a.v 3232 4242 00 1372-1372 - ++ ++ SU(2)\mathrm{SU}(2) q+8q2+(10β1)q3+26q4+(80+)q6+q+8q^{2}+(10-\beta _{1})q^{3}+2^{6}q^{4}+(80+\cdots)q^{6}+\cdots
350.8.a.z 350.a 1.a 66 109.335109.335 Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots) None 70.8.c.d 48-48 1414 00 20582058 ++ - - SU(2)\mathrm{SU}(2) q8q2+(2+β1)q3+26q4+(24+)q6+q-8q^{2}+(2+\beta _{1})q^{3}+2^{6}q^{4}+(-2^{4}+\cdots)q^{6}+\cdots
350.8.a.ba 350.a 1.a 66 109.335109.335 Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots) None 70.8.c.d 4848 14-14 00 2058-2058 - - ++ SU(2)\mathrm{SU}(2) q+8q2+(2β1)q3+26q4+(24+)q6+q+8q^{2}+(-2-\beta _{1})q^{3}+2^{6}q^{4}+(-2^{4}+\cdots)q^{6}+\cdots

Decomposition of S8old(Γ0(350))S_{8}^{\mathrm{old}}(\Gamma_0(350)) into lower level spaces