Properties

Label 351.3.n
Level $351$
Weight $3$
Character orbit 351.n
Rep. character $\chi_{351}(116,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $52$
Newform subspaces $1$
Sturm bound $126$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 351.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(126\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(351, [\chi])\).

Total New Old
Modular forms 180 60 120
Cusp forms 156 52 104
Eisenstein series 24 8 16

Trace form

\( 52 q - 50 q^{4} + 8 q^{10} - 6 q^{13} + 6 q^{14} - 90 q^{16} + 14 q^{22} - 138 q^{23} - 92 q^{25} - 48 q^{29} - 324 q^{38} - 68 q^{40} + 62 q^{43} + 70 q^{49} - 4 q^{52} + 92 q^{55} + 276 q^{56} + 12 q^{61}+ \cdots - 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(351, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
351.3.n.a 351.n 117.n $52$ $9.564$ None 117.3.n.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{3}^{\mathrm{old}}(351, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(351, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)