Defining parameters
Level: | \( N \) | \(=\) | \( 351 = 3^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 351.n (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 117 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(126\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(351, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 180 | 60 | 120 |
Cusp forms | 156 | 52 | 104 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(351, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
351.3.n.a | $52$ | $9.564$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(351, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(351, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)