Properties

Label 352.5.t
Level $352$
Weight $5$
Character orbit 352.t
Rep. character $\chi_{352}(15,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $184$
Sturm bound $240$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 352.t (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 88 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(240\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(352, [\chi])\).

Total New Old
Modular forms 800 200 600
Cusp forms 736 184 552
Eisenstein series 64 16 48

Trace form

\( 184 q + 6 q^{3} - 1140 q^{9} - 88 q^{11} - 6 q^{17} + 6 q^{19} + 4744 q^{25} - 318 q^{27} - 342 q^{33} + 2506 q^{35} - 2214 q^{41} - 14512 q^{43} + 11656 q^{49} - 318 q^{51} + 1438 q^{57} - 6522 q^{59}+ \cdots + 61860 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(352, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{5}^{\mathrm{old}}(352, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(352, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 3}\)