Properties

Label 3528.1
Level 3528
Weight 1
Dimension 243
Nonzero newspaces 22
Newform subspaces 45
Sturm bound 677376
Trace bound 25

Downloads

Learn more

Defining parameters

Level: N N = 3528=233272 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}
Weight: k k = 1 1
Nonzero newspaces: 22 22
Newform subspaces: 45 45
Sturm bound: 677376677376
Trace bound: 2525

Dimensions

The following table gives the dimensions of various subspaces of M1(Γ1(3528))M_{1}(\Gamma_1(3528)).

Total New Old
Modular forms 6658 1116 5542
Cusp forms 898 243 655
Eisenstein series 5760 873 4887

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 219 16 8 0

Trace form

243q+3q3+6q4+q6+3q8q9+8q10+q114q12+4q138q15+6q162q17+2q18+4q19+13q222q23+q24+12q254q26++10q99+O(q100) 243 q + 3 q^{3} + 6 q^{4} + q^{6} + 3 q^{8} - q^{9} + 8 q^{10} + q^{11} - 4 q^{12} + 4 q^{13} - 8 q^{15} + 6 q^{16} - 2 q^{17} + 2 q^{18} + 4 q^{19} + 13 q^{22} - 2 q^{23} + q^{24} + 12 q^{25} - 4 q^{26}+ \cdots + 10 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(Γ1(3528))S_{1}^{\mathrm{new}}(\Gamma_1(3528))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
3528.1.d χ3528(1961,)\chi_{3528}(1961, \cdot) 3528.1.d.a 2 1
3528.1.d.b 2
3528.1.e χ3528(1763,)\chi_{3528}(1763, \cdot) None 0 1
3528.1.f χ3528(2449,)\chi_{3528}(2449, \cdot) None 0 1
3528.1.g χ3528(883,)\chi_{3528}(883, \cdot) 3528.1.g.a 1 1
3528.1.g.b 2
3528.1.g.c 2
3528.1.l χ3528(685,)\chi_{3528}(685, \cdot) 3528.1.l.a 4 1
3528.1.m χ3528(2647,)\chi_{3528}(2647, \cdot) None 0 1
3528.1.n χ3528(197,)\chi_{3528}(197, \cdot) 3528.1.n.a 4 1
3528.1.o χ3528(3527,)\chi_{3528}(3527, \cdot) None 0 1
3528.1.u χ3528(803,)\chi_{3528}(803, \cdot) 3528.1.u.a 16 2
3528.1.v χ3528(569,)\chi_{3528}(569, \cdot) None 0 2
3528.1.ba χ3528(67,)\chi_{3528}(67, \cdot) 3528.1.ba.a 2 2
3528.1.ba.b 2
3528.1.ba.c 4
3528.1.ba.d 4
3528.1.ba.e 8
3528.1.bb χ3528(313,)\chi_{3528}(313, \cdot) None 0 2
3528.1.bc χ3528(215,)\chi_{3528}(215, \cdot) None 0 2
3528.1.bd χ3528(557,)\chi_{3528}(557, \cdot) 3528.1.bd.a 8 2
3528.1.bg χ3528(1373,)\chi_{3528}(1373, \cdot) 3528.1.bg.a 8 2
3528.1.bh χ3528(1391,)\chi_{3528}(1391, \cdot) None 0 2
3528.1.bi χ3528(1157,)\chi_{3528}(1157, \cdot) 3528.1.bi.a 8 2
3528.1.bj χ3528(1175,)\chi_{3528}(1175, \cdot) None 0 2
3528.1.bn χ3528(1861,)\chi_{3528}(1861, \cdot) None 0 2
3528.1.bo χ3528(655,)\chi_{3528}(655, \cdot) None 0 2
3528.1.bp χ3528(1501,)\chi_{3528}(1501, \cdot) 3528.1.bp.a 2 2
3528.1.bp.b 2
3528.1.bp.c 4
3528.1.bq χ3528(295,)\chi_{3528}(295, \cdot) None 0 2
3528.1.bv χ3528(2431,)\chi_{3528}(2431, \cdot) None 0 2
3528.1.bw χ3528(325,)\chi_{3528}(325, \cdot) 3528.1.bw.a 2 2
3528.1.bw.b 4
3528.1.bw.c 4
3528.1.bx χ3528(667,)\chi_{3528}(667, \cdot) 3528.1.bx.a 2 2
3528.1.bx.b 4
3528.1.bx.c 4
3528.1.by χ3528(2089,)\chi_{3528}(2089, \cdot) None 0 2
3528.1.cd χ3528(97,)\chi_{3528}(97, \cdot) None 0 2
3528.1.ce χ3528(2419,)\chi_{3528}(2419, \cdot) 3528.1.ce.a 2 2
3528.1.ce.b 2
3528.1.ce.c 4
3528.1.ce.d 4
3528.1.ce.e 8
3528.1.cf χ3528(1489,)\chi_{3528}(1489, \cdot) None 0 2
3528.1.cg χ3528(2059,)\chi_{3528}(2059, \cdot) 3528.1.cg.a 2 2
3528.1.cg.b 4
3528.1.cg.c 4
3528.1.cg.d 4
3528.1.cg.e 8
3528.1.cl χ3528(785,)\chi_{3528}(785, \cdot) None 0 2
3528.1.cm χ3528(227,)\chi_{3528}(227, \cdot) 3528.1.cm.a 16 2
3528.1.cn χ3528(1145,)\chi_{3528}(1145, \cdot) None 0 2
3528.1.co χ3528(587,)\chi_{3528}(587, \cdot) 3528.1.co.a 16 2
3528.1.ct χ3528(1403,)\chi_{3528}(1403, \cdot) 3528.1.ct.a 8 2
3528.1.cu χ3528(1745,)\chi_{3528}(1745, \cdot) 3528.1.cu.a 4 2
3528.1.cv χ3528(79,)\chi_{3528}(79, \cdot) None 0 2
3528.1.cw χ3528(2077,)\chi_{3528}(2077, \cdot) 3528.1.cw.a 2 2
3528.1.cw.b 2
3528.1.cw.c 4
3528.1.da χ3528(815,)\chi_{3528}(815, \cdot) None 0 2
3528.1.db χ3528(1733,)\chi_{3528}(1733, \cdot) 3528.1.db.a 8 2
3528.1.de χ3528(503,)\chi_{3528}(503, \cdot) None 0 6
3528.1.df χ3528(701,)\chi_{3528}(701, \cdot) None 0 6
3528.1.dg χ3528(127,)\chi_{3528}(127, \cdot) None 0 6
3528.1.dh χ3528(181,)\chi_{3528}(181, \cdot) 3528.1.dh.a 12 6
3528.1.dm χ3528(379,)\chi_{3528}(379, \cdot) None 0 6
3528.1.dn χ3528(433,)\chi_{3528}(433, \cdot) None 0 6
3528.1.do χ3528(251,)\chi_{3528}(251, \cdot) None 0 6
3528.1.dp χ3528(449,)\chi_{3528}(449, \cdot) None 0 6
3528.1.dw χ3528(221,)\chi_{3528}(221, \cdot) None 0 12
3528.1.dx χ3528(47,)\chi_{3528}(47, \cdot) None 0 12
3528.1.eb χ3528(61,)\chi_{3528}(61, \cdot) None 0 12
3528.1.ec χ3528(319,)\chi_{3528}(319, \cdot) None 0 12
3528.1.ed χ3528(233,)\chi_{3528}(233, \cdot) None 0 12
3528.1.ee χ3528(395,)\chi_{3528}(395, \cdot) None 0 12
3528.1.ej χ3528(83,)\chi_{3528}(83, \cdot) None 0 12
3528.1.ek χ3528(137,)\chi_{3528}(137, \cdot) None 0 12
3528.1.el χ3528(131,)\chi_{3528}(131, \cdot) None 0 12
3528.1.em χ3528(113,)\chi_{3528}(113, \cdot) None 0 12
3528.1.er χ3528(43,)\chi_{3528}(43, \cdot) None 0 12
3528.1.es χ3528(241,)\chi_{3528}(241, \cdot) None 0 12
3528.1.et χ3528(403,)\chi_{3528}(403, \cdot) None 0 12
3528.1.eu χ3528(265,)\chi_{3528}(265, \cdot) None 0 12
3528.1.ez χ3528(73,)\chi_{3528}(73, \cdot) None 0 12
3528.1.fa χ3528(163,)\chi_{3528}(163, \cdot) None 0 12
3528.1.fb χ3528(397,)\chi_{3528}(397, \cdot) 3528.1.fb.a 24 12
3528.1.fc χ3528(415,)\chi_{3528}(415, \cdot) None 0 12
3528.1.fh χ3528(463,)\chi_{3528}(463, \cdot) None 0 12
3528.1.fi χ3528(229,)\chi_{3528}(229, \cdot) None 0 12
3528.1.fj χ3528(151,)\chi_{3528}(151, \cdot) None 0 12
3528.1.fk χ3528(13,)\chi_{3528}(13, \cdot) None 0 12
3528.1.fo χ3528(167,)\chi_{3528}(167, \cdot) None 0 12
3528.1.fp χ3528(149,)\chi_{3528}(149, \cdot) None 0 12
3528.1.fq χ3528(383,)\chi_{3528}(383, \cdot) None 0 12
3528.1.fr χ3528(29,)\chi_{3528}(29, \cdot) None 0 12
3528.1.fu χ3528(53,)\chi_{3528}(53, \cdot) None 0 12
3528.1.fv χ3528(143,)\chi_{3528}(143, \cdot) None 0 12
3528.1.fw χ3528(409,)\chi_{3528}(409, \cdot) None 0 12
3528.1.fx χ3528(331,)\chi_{3528}(331, \cdot) None 0 12
3528.1.gc χ3528(65,)\chi_{3528}(65, \cdot) None 0 12
3528.1.gd χ3528(59,)\chi_{3528}(59, \cdot) None 0 12

Decomposition of S1old(Γ1(3528))S_{1}^{\mathrm{old}}(\Gamma_1(3528)) into lower level spaces

S1old(Γ1(3528)) S_{1}^{\mathrm{old}}(\Gamma_1(3528)) \cong S1new(Γ1(1))S_{1}^{\mathrm{new}}(\Gamma_1(1))36^{\oplus 36}\oplusS1new(Γ1(2))S_{1}^{\mathrm{new}}(\Gamma_1(2))27^{\oplus 27}\oplusS1new(Γ1(3))S_{1}^{\mathrm{new}}(\Gamma_1(3))24^{\oplus 24}\oplusS1new(Γ1(4))S_{1}^{\mathrm{new}}(\Gamma_1(4))18^{\oplus 18}\oplusS1new(Γ1(6))S_{1}^{\mathrm{new}}(\Gamma_1(6))18^{\oplus 18}\oplusS1new(Γ1(7))S_{1}^{\mathrm{new}}(\Gamma_1(7))24^{\oplus 24}\oplusS1new(Γ1(8))S_{1}^{\mathrm{new}}(\Gamma_1(8))9^{\oplus 9}\oplusS1new(Γ1(9))S_{1}^{\mathrm{new}}(\Gamma_1(9))12^{\oplus 12}\oplusS1new(Γ1(12))S_{1}^{\mathrm{new}}(\Gamma_1(12))12^{\oplus 12}\oplusS1new(Γ1(14))S_{1}^{\mathrm{new}}(\Gamma_1(14))18^{\oplus 18}\oplusS1new(Γ1(18))S_{1}^{\mathrm{new}}(\Gamma_1(18))9^{\oplus 9}\oplusS1new(Γ1(21))S_{1}^{\mathrm{new}}(\Gamma_1(21))16^{\oplus 16}\oplusS1new(Γ1(24))S_{1}^{\mathrm{new}}(\Gamma_1(24))6^{\oplus 6}\oplusS1new(Γ1(28))S_{1}^{\mathrm{new}}(\Gamma_1(28))12^{\oplus 12}\oplusS1new(Γ1(36))S_{1}^{\mathrm{new}}(\Gamma_1(36))6^{\oplus 6}\oplusS1new(Γ1(42))S_{1}^{\mathrm{new}}(\Gamma_1(42))12^{\oplus 12}\oplusS1new(Γ1(49))S_{1}^{\mathrm{new}}(\Gamma_1(49))12^{\oplus 12}\oplusS1new(Γ1(56))S_{1}^{\mathrm{new}}(\Gamma_1(56))6^{\oplus 6}\oplusS1new(Γ1(63))S_{1}^{\mathrm{new}}(\Gamma_1(63))8^{\oplus 8}\oplusS1new(Γ1(72))S_{1}^{\mathrm{new}}(\Gamma_1(72))3^{\oplus 3}\oplusS1new(Γ1(84))S_{1}^{\mathrm{new}}(\Gamma_1(84))8^{\oplus 8}\oplusS1new(Γ1(98))S_{1}^{\mathrm{new}}(\Gamma_1(98))9^{\oplus 9}\oplusS1new(Γ1(126))S_{1}^{\mathrm{new}}(\Gamma_1(126))6^{\oplus 6}\oplusS1new(Γ1(147))S_{1}^{\mathrm{new}}(\Gamma_1(147))8^{\oplus 8}\oplusS1new(Γ1(168))S_{1}^{\mathrm{new}}(\Gamma_1(168))4^{\oplus 4}\oplusS1new(Γ1(196))S_{1}^{\mathrm{new}}(\Gamma_1(196))6^{\oplus 6}\oplusS1new(Γ1(252))S_{1}^{\mathrm{new}}(\Gamma_1(252))4^{\oplus 4}\oplusS1new(Γ1(294))S_{1}^{\mathrm{new}}(\Gamma_1(294))6^{\oplus 6}\oplusS1new(Γ1(392))S_{1}^{\mathrm{new}}(\Gamma_1(392))3^{\oplus 3}\oplusS1new(Γ1(441))S_{1}^{\mathrm{new}}(\Gamma_1(441))4^{\oplus 4}\oplusS1new(Γ1(504))S_{1}^{\mathrm{new}}(\Gamma_1(504))2^{\oplus 2}\oplusS1new(Γ1(588))S_{1}^{\mathrm{new}}(\Gamma_1(588))4^{\oplus 4}\oplusS1new(Γ1(882))S_{1}^{\mathrm{new}}(\Gamma_1(882))3^{\oplus 3}\oplusS1new(Γ1(1176))S_{1}^{\mathrm{new}}(\Gamma_1(1176))2^{\oplus 2}\oplusS1new(Γ1(1764))S_{1}^{\mathrm{new}}(\Gamma_1(1764))2^{\oplus 2}